
Supplement to “User-Friendly Covariance Estimation for
Heavy-Tailed Distributions”

Yuan Ke∗, Stanislav Minsker†, Zhao Ren‡, Qiang Sun§ and Wen-Xin Zhou¶

In Sections A–C, we provide proofs of all the theoretical results in the main text. In addition,
we investigate robust covariance estimation and inference under factor models in Section D, which
might be of independent interest.

A Proof of Proposition 2.1

Without loss of generality we assume µ = 0. We construct a random vector X ∈ Rd that follows the
distribution below:

P
{
X = (0, . . . , 0, nη︸︷︷︸

jth

, 0, . . . , 0)ᵀ
}

= P
{
X = (0, . . . , 0, −nη︸︷︷︸

jth

, 0, . . . , 0)ᵀ
}

=
σ2

2n2η2

for each j = 1, . . . , d, and

P(X = 0) = 1 −
dσ2

n2η2 .

Here we assume η2 > dσ2/n2 so that P(X = 0) > 0. In other words, the number of non-zero
elements of X is at most 1. It is easy to see that the mean and covariance matrix of X are 0 and
σ2Id, respectively.

Consider the empirical mean X̄ = (1/n)
∑n

i=1 Xi, where X1, . . . , Xn are i.i.d. from X. It follows
that

P(‖X̄‖∞ ≥ η) ≥ P
(
exactly one of the n samples is not equal to 0

)
=

dσ2

nη2

(
1 −

dσ2

n2η2

)n−1
.

Therefore, as long as δ < (2e)−1, the following bound

‖X̄‖∞ ≥ σ
√

d
nδ

(
1 −

2eδ
n

)(n−1)/2

holds with probability at least δ, as claimed. �
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B Proofs for Section 3

B.1 Proof of Theorem 3.1

For each 1 ≤ k ≤ ` ≤ d, note that σ̂T1,k` is a U-statistic with a bounded kernel of order two, say

σ̂T1,k` =
(
n
2

)−1 ∑
1≤i< j≤n hk`(Xi, X j). According to Hoeffding (1963), σ̂T1,k` can be represented as an

average of (dependent) sums of independent random variables. Specifically, define

W(x1, . . . , xn) =
hk`(x1, x2) + hk`(x3, x4) + · · · + hk`(x2m−1, x2m)

m

for x1, . . . , xn ∈ R
d. Let

∑
P denote the summation over all n! permutations (i1, . . . , in) of [n] :=

{1, . . . , n} and
∑
C denote the summation over all

(
n
2

)
pairs (i1, i2) (i1 < i2) from [n]. Then we have

m
∑
PW(x1, . . . , xn) = m2!(n − 2)!

∑
C hk`(xi1 , xi2) and hence

σ̂T1,k` =
1
n!

∑
P

W(Xi1 , . . . , Xin). (B.1)

Write τ = τk` and v = vk` for simplicity. For any y > 0, by Markov’s inequality, (B.1), convexity
and independence, we derive that

P(σ̂T1,k` − σk` ≥ y) ≤ e−(m/τ)(y+σk`)Ee(m/τ)σ̂T1,k`

≤ e−(m/τ)(y+σk`) 1
n!

∑
P

Ee(1/τ)
∑m

j=1 hk`(Xi2 j−1 ,Xi2 j )

= e−(m/τ)(y+σk`) 1
n!

∑
P

m∏
j=1

Ee(1/τ)hk`(Xi2 j−1 ,Xi2 j ).

Note that hk`(Xi2 j−1 , Xi2 j) = ψτ(YπkYπ`/2) = τψ1(YπkYπ`/(2τ)) for some 1 ≤ π ≤ N. In addition, it is
easy to verify the inequality that

− log(1 − x + x2) ≤ ψ1(x) ≤ log(1 + x + x2) for all x ∈ R. (B.2)

Therefore, we have

Ee(1/τ)hk`(Xi2 j−1 ,Xi2 j ) ≤ E{1 + YπkYπ`/(2τ) + (YπkYπ`)2/(2τ)2}

= 1 + σk`/τ + (1/τ)2E(YπkYπ`/2)2 ≤ eσk`/τ+(v/τ)2
.

Combining the above calculations gives

P(σ̂T1,k` − σk` ≥ y) ≤ e−(m/τ)y+m(v/τ)2
= e−my2/(4v2),

where the equality holds by taking τ = 2v2/y. Similarly, it can be shown that P(σ̂T1,k` − σk` ≤ −y) ≤

e−my2/(4v2). Consequently, for δ ∈ (0, 1), taking y = 2v
√

(2 log d + log δ−1)/m, or equivalently,
τ = v

√
m/(2 log d + log δ−1), we arrive at

P

(
|σ̂T1,k` − σk`| ≥ 2v

√
2 log d + log δ−1

m

)
≤

2δ
d2 .

From the union bound it follows that

P

(
‖Σ̂T1 − Σ‖max > 2 max

1≤k,`≤d
vk`

√
2 log d + log δ−1

n

)
≤ (1 + d−1)δ.

This proves (3.5). �
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B.2 Proof of Theorem 3.2

To begin with, note that Σ̂T2 can be written as a U-statistic of order 2. Define the index set I =

{(i, j) : 1 ≤ i < j ≤ n} with cardinality
(
n
2

)
. Let h(Xi, X j) = (Xi − X j)(Xi − X j)ᵀ/2 and Zi, j =

τ−1ψτ(h(Xi, X j)) = ψ1(τ−1h(Xi, X j)), such that

Σ̃ :=
1
τ
Σ̂T2 =

1(
n
2

) ∑
(i, j)∈I

Zi, j.

We now rewrite the U-statistic Σ̃ as a convex combination of sums of independent random
matrices. As in the proof of Theorem 3.1, we define

W(1,...,n) = m−1(Z1,2 + Z3,4 + . . . + Z2m−1,2m).

For every permutation π = (i1, . . . , in), we adopt the notation Wπ = W(i1,...,in) such that Σ̃τ =

(n!)−1 ∑
π∈PWπ. Using the convexity of the mappings A 7→ λmax(A) and x 7→ ex, we obtain that

exp{λmax(Σ̃ − Στ)} ≤
1
n!

∑
π∈P

exp{λmax(Wπ − Σ
τ)},

where Στ := τ−1Σ. Combined with Markov’s inequality and the inequality eλmax(A) ≤ tr eA, this
further implies

P{
√

m λmax(Σ̂T2 − Σ) ≥ y} = P
{
eλmax(mΣ̃−mΣτ) ≥ ey

√
m/τ

}
≤ e−y

√
m/τ 1

n!

∑
π∈P

E exp{λmax(mWπ − mΣτ)}

≤ e−y
√

m/τ 1
n!

∑
π∈P

E tr exp(mWπ − mΣτ).

For every π = (i1, . . . , in) ∈ P, define Zπ, j = Zi2 j−1,i2 j and Hπ, j = h(Xi2 j−1 , Xi2 j), such that Zπ,1, . . . ,Zπ,m

are independent and EHπ, j = Σ. Then Wπ can be written as Wπ = m−1(Zπ,1 + . . . + Zπ,m). Recall
that ψτ(x) = τψ1(x/τ). In view of (B.2), we have the matrix inequality

− log(I − τ−1Hπ, j + τ−2H2
π, j) � Zπ, j � log(I + τ−1Hπ, j + τ−2H2

π, j).

Then we can bound E exp tr(mWπ − mΣτ) by

E[m−1]Em tr exp
( m−1∑

j=1

Zπ, j − mΣτ + Zπ,m

)

6 E[m−1]Em tr exp
{ m−1∑

j=1

Zπ, j − mΣτ + log(I + τ−1Hπ,m + τ−2H2
π,m)

}
, (B.3)

where the expectation Em is taken with respect to {Xi2m−1 , Xi2m} and the expectation E[m−1] is taken
with respect to {Xi1 , ..., Xi2m−2}. To bound the right-hand side of (B.3), we follow a similar argument
as in Minsker (2018). By Lieb’s concavity theorem (see, e.g. Fact 2.5 in Minsker (2018)) and
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Jensen’s inequality, we arrive at

E tr exp(mWπ − mΣτ)

≤ E tr exp
{ m−1∑

j=1

Zπ, j − mΣτ + log(I + τ−1EHπ,m + τ−2EH2
π,m)

}
≤ tr exp

{ m∑
j=1

log(I + τ−1EHπ, j + τ−2EH2
π, j) − mΣτ

}
≤ tr exp

( 1
τ2

m∑
j=1

EH2
π, j

)
≤ d exp(mτ−2‖EH2

π,1‖2)

= d exp(mτ−2v2),

where we used the bound tr eA ≤ de‖A‖ in the last inequality and the definition v2 from (3.7) in the
last equality.

Letting τ = 2v2 √m/y, we get

P{
√

m λmax(Σ̂T2 − Σ) ≥ y} ≤ d exp
(
−

y
√

m
τ

+
mv2

τ2

)
≤ de−y2/(4v2).

Similarly, it can be shown that

P{
√

m λmin(Σ̂T2 − Σ) ≤ −y} ≤ de−y2/(4v2).

Finally, taking y = 2v
√

log(2d) + log δ−1 in the last two displays proves (3.9). �

B.3 Proof of Theorem 3.3

Let vmax = max1≤k,`≤d vk`. By the union bound, for any y > 0 it holds

P(‖Σ̂H1 − Σ‖max ≥ vmax y)

≤
∑

1≤k≤`≤d

P(|σ̂H1,k` − σk`| ≥ vk` y) ≤
d(d + 1)

2
max

1≤k≤`≤d
P(|σ̂H1,k` − σk`| ≥ vk` y). (B.4)

In the rest of the proof, we fix (k, `) ∈ [d]×[d] and write τ = τk` and v = vk` for simplicity. Moreover,
define the index set I = {(i, j) : 1 ≤ i < j ≤ n}, the collection {Zi, j = (Xik − X jk)(Xi` − X j`)/2 :
(i, j) ∈ I} of random variables indexed by I and the loss function L(θ) =

∑
(i, j)∈I `τ(Zi, j − θ). With

this notation, we have
σ̂H1,k` = θ̂ := argmin

θ∈R
L(θ).

Without loss of generality, we assume µ = (µ1, . . . , µd)ᵀ = 0; otherwise, we can simply replace Xik

by Xik − µk for all i ∈ [n] and k ∈ [d].
Note that θ̂ is the unique solution of the equation

Ψ(θ) :=
1(
n
2

) ∑
(i, j)∈I

ψτ(Zi, j − θ) = 0,
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where ψτ(·) is defined in (3.1). Similarly to the proof of Theorem 3.1, we define

w(1,...,n)(θ) =
1

mτ
{ψτ(Z1,2 − θ) + ψτ(Z3,4 − θ) + . . . + ψτ(Z2m−1,2m − θ)}.

Denote by P the class of all n! permutations on [n] and let π = (i1, . . . , in) be a permutation,
i.e., π( j) = i j for j = 1, . . . , n. Put wπ(θ) = w(i1,...,in)(θ) for π ∈ P, such that τ−1mΨ(θ) =

(n!)−1 ∑
π∈Pmwπ(θ). By convexity, we have

E{eτ
−1mΨ(θ)} ≤

1
n!

∑
π∈P

E{emwπ(θ)}.

Recall that EZi, j = σk` for any (i, j) ∈ I. By (3.14),

v2 = var(Z1,2) =
1
2
{E((Xk − µk)2(X` − µ`)2) + σkkσ``}.

For π = (1, . . . , n), by (B.2) and the fact that τ−1ψτ(x) = ψ1(x/τ), we have

E{emwπ(θ)} =

m∏
j=1

E exp{ψ1((Z2 j−1,2 j − θ)/τ)}

≤

m∏
j=1

E{1 + τ−1(Z2 j−1,2 j − θ) + τ−2(Z2 j−1,2 j − θ)2}

≤

m∏
j=1

[1 + τ−1(σk` − θ) + τ−2{v2 + (σk` − θ)2}]

≤ exp[mτ−1(σk` − θ) + mτ−2{v2 + (σk` − θ)2}]. (B.5)

Similarly, it can be shown that

E{−emwπ(θ)} ≤ exp[−mτ−1(σk` − θ) + mτ−2{v2 + (σk` − θ)2}]. (B.6)

Inequalities (B.5) and (B.6) hold for every permutation π ∈ P. For η ∈ (0, 1), define

B+(θ) = σk` − θ +
v2 + (σk` − θ)2

τ
+
τ log η−1

m
,

B−(θ) = σk` − θ −
v2 + (σk` − θ)2

τ
−
τ log η−1

m
.

Together, (B.5), (B.6) and Markov’s inequality imply

P{Ψ(θ) > B+(θ)} ≤ e−τ
−1mB+(θ)E{eτ

−1mΨ(θ)} ≤ η,

and P{Ψ(θ) < B−(θ)} ≤ e−τ
−1mB−(θ)E{−eτ

−1mΨ(θ)} ≤ η.

Recall that Ψ(̂θ) = 0. Let θ+ be the smallest solution of the quadratic equation B+(θ+) = 0, and θ−
be the largest solution of the equation B−(θ−) = 0. Noting that Ψ(·) is decreasing, it follows from
the last display that

P(θ− ≤ θ̂ ≤ θ+) ≥ 1 − 2η.
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Similarly to the proof of Proposition 2.4 in Catoni (2012), it can be shown that with τ = v
√

m/ log η−1,

θ+ ≤ σk` + 2
(v2

τ
+
τ log η−1

m

)
and θ− ≥ σk` − 2

(v2

τ
+
τ log η−1

m

)
as long as m ≥ 8 log η−1. Consequently, we obtain that with probability at least 1−2η, |σ̂H1,k`−σk`| ≤

4v
√

(log η−1)/m.
Taking y = 4

√
(log η−1)/m in (B.4) yields ‖Σ̂H1 − Σ‖max ≤ 4vmax

√
(log η−1)/m with probability

at least 1 − d(d + 1)η. Finally, taking δ = d2η proves (3.16). �

B.4 Proof of Theorem 3.5

We will use Theorem 1 and Lemma 1 in Minsker and Strawn (2017) that connect the performance
of σ̂MOM

`m to the rate of convergence of σ̂(1)
`m to the normal law. It is well known that, whenever the

4th moments of the entries of X are finite,
√
|G1|

σ̂(1)
`m−σ`m
∆`m

converges in distribution to the standard
normal distribution. The rate of this convergence can be obtained via an analogue of the Berry-
Esseen theorem for the sample covariance. Specifically, for any 1 ≤ `,m ≤ d, we seek an upper
bound on

sup
t∈R

∣∣∣∣∣∣∣P
(√
|G1|

σ̂(1)
`m − σ`m

∆`m
≤ t

)
− P(Z ≤ t)

∣∣∣∣∣∣∣ ,
where Z ∼ N(0, 1). To this end, we will use Theorem 2.9 in Pinelis and Molzon (2016). Using the
notation therein, we take V = (X` − EX`, Xm − EXm, X`Xm − E(X`Xm))ᵀ, f (x1, x2, x3) = x3 − x1 · x2,
and deduce that

sup
t∈R

∣∣∣∣∣∣∣P
(√
|G1|

σ̂(1)
`m − σ`m

∆`m
≤ t

)
− P(Z ≤ t)

∣∣∣∣∣∣∣ ≤ C`m√|G1|
, (B.7)

where C`m > 0 is a constant depending on ∆`m and E|(X` − EX`)(Xm − EXm)|3. Together with
Theorem 1 and Lemma 1 of Minsker and Strawn (2017), (B.7) implies that

∣∣∣σ̂MOM
`m − σ`m

∣∣∣ ≤ 3∆`m

√
k
n

√ s
k

+ C`m

√
k
n


with probability at least 1 − 4e−2s for all s > 0 satisfying√

s
k

+ C`m

√
k
n
≤ 0.33. (B.8)

Taking the union bound over all `,m, we obtain that with probability at least 1 − 2d(d + 1)e−2s,

‖Σ̂MOM − Σ‖max ≤ 3 max
`,m

∆`m

(√
s
n

+ max
`,m
C`m

k
n

)
for all s > 0 satisfying (B.8). The latter is equivalent to the statement of the theorem. �
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B.5 Proof of Corollary 3.1

From the proof of Theorem 3.2, we find that

‖E{(X1 − X2)(X1 − X2)ᵀ}2‖2 = 2‖E{(X − µ)(X − µ)ᵀ}2 + Tr(Σ)Σ + 2Σ2‖2.

Under the bounded kurtosis condition that K = supu∈Sd−1 kurt(uᵀX) < ∞, it follows from Lemma 4.1
in Minsker and Wei (2018) that

‖E{(X − µ)(X − µ)ᵀ}2‖2 ≤ KTr(Σ)‖Σ‖2.

Together, the last two displays imply

‖E{(X1 − X2)(X1 − X2)ᵀ}2‖2 ≤ 2‖Σ‖2{(K + 1)Tr(Σ) + 2‖Σ‖2}.

Taking v = ‖E{(X1 − X2)(X1 − X2)ᵀ}2‖1/22 /2 that scales with Tr(Σ)1/2‖Σ‖
1/2
2 = r(Σ)1/2‖Σ‖2, the

resulting estimator satisfies

‖Σ̂T2 − Σ‖2 . K1/2‖Σ‖2

√
r(Σ)(log d + t)

n
(B.9)

with probability at least 1 − e−t. �

C Proofs for Section 5

C.1 Proof of Theorem 5.1

Define each principal submatrix of Σ as Σ(p,q) = EZ(p,q)
1 Z(p,q)ᵀ

1 /2, which is estimated by Σ̂(p,q),T
2 .

As a result, we expect the final estimator Σ̂q to be close to

Σq =

d(d−1)/qe∑
j=−1

Ed
jq+1(Σ( jq+1,2q)) −

d(d−1)/qe∑
j=0

Ed
jq+1(Σ( jq+1,q)).

By the triangle inequality, we have ‖Σ̂q −Σ‖2 ≤ ‖Σ̂q −Σq‖2 + ‖Σq −Σ‖2. We first establish an upper
bound for the bias term ‖Σq − Σ‖2. According to the decomposition illustrated by Figure 2, Σq is
a banded version of the population covariance with bandwidth between q and 2q. Therefore, we
bound the spectral norm of Σq − Σ by the ‖ · ‖1,1 norm as follows:

‖Σq − Σ‖2 ≤ max
1≤`≤d

∑
k:|k−`|>q

|σk`| ≤
M
qα
.

It remains to control the estimation error ‖Σ̂q − Σq‖2. Define D(p,q) = Σ̂
(p,q),T
2 − Σ(p,q),

S1 =

d(d−1)/qe∑
j=−1: j is odd

Ed
jq+1{D

( jq+1,2q)}, S2 =

d(d−1)/qe∑
j=0: j is even

Ed
jq+1{D

( jq+1,2q)},

and S3 =
∑d(d−1)/qe

j=0 Ed
jq+1{D

( jq+1,q)}. Note that each Si above is a sum of disjoint block diagonal
matrices. Therefore,

‖Σ̂q − Σq‖2 ≤ ‖S1‖2 + ‖S3‖2 + ‖S3‖2

≤ 3
d(d−1)/qe

max
j=−1

{‖D( jq+1,2q)‖2, ‖D( jq+1,q)‖2}. (C.1)
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Applying Theorem 3.2 to each principal submatrix with the choice of δ = (nc0d)−1 in τ, and by the
union bound, we obtain that with probability at least 1 − 2dδ = 1 − 2n−c0 ,

d(d−1)/qe
max
j=−1

{‖D( jq+1,2q)‖2, ‖D( jq+1,q)‖2}

≤ 2‖Σ‖1/22 {(M1 + 1)q‖Σ‖2 + ‖Σ‖2}
1/2

√
log(4q) + log δ−1

m

≤ 2M0
√

1 + (M1 + 1)q

√
log(4d) + c0 log(nd)

n
,

where we used the inequalities tr(D( jq+1,2q)) ≤ 2q‖Σ‖2 and ‖Σ‖2 ≤ M0. Plugging this into (C.1), we
obtain that with probability at least 1 − 2n−c0 ,

‖Σ̂q − Σq‖2 ≤ 6M0
√

1 + (M1 + 1)q

√
log(4d) + c0 log(nd)

n
.

In view of the upper bounds on ‖Σ̂q − Σq‖2 and ‖Σq − Σ‖2, the optimal bandwidth q is of order
{n/ log(nd)}1/(2α+1) ∧ d, which leads to the desired result. �

C.2 Proof of Theorem 5.3

Define the symmetrized Bregman divergence for the loss function L(Θ) = 〈Θ2, Σ̂T1 〉 − tr(Θ) as
Ds
L

(Θ1,Θ2) = 〈∇L(Θ1) − ∇L(Θ2),Θ1 −Θ2〉. We first need the following two lemmas.

Lemma C.1. Provided λ ≥ 2‖∇L(Θ∗)‖max, Θ̂ falls in the `1-cone

‖Θ̂Sc −Θ∗
Sc‖`1 ≤ 3‖Θ̂S −Θ∗S‖`1 .

Proof of Lemma C.1. Set Γ̂ = (̂Γk`)1≤k,`≤d ∈ R
d×d, where Γ̂k` = ∂|Θ̂k`| ∈ [1, 1] whenever k , `, and

Γ̂k` = 0 whenever k = `. Here ∂ f (x0) denotes the subdifferential of f at x0. By the convexity of the
loss function and the optimality condition, we have

0 ≤ 〈∇L(Θ̂) − ∇L(Θ∗), Θ̂ −Θ∗〉

= 〈−λΓ̂ − ∇L(Θ∗), Θ̂ −Θ∗〉

= −〈λΓ̂, Θ̂ −Θ∗〉 − 〈∇L(Θ∗), Θ̂ −Θ∗〉

≤ −λ‖Θ̂Sc −Θ∗
Sc‖`1 + λ‖Θ̂S −Θ

∗
S
‖`1 +

λ

2
‖Θ̂ −Θ∗‖`1 .

Rearranging terms proves the stated result. �

Lemma C.2. Under the restricted eigenvalue condition, it holds

Ds
L

(Θ̂,Θ∗) ≥ κ−‖Θ̂ −Θ∗‖2F.

Proof. We use vec(A) to denote the vectorized form of matrix A. Let ∆ = Θ̂ − Θ∗. Then by the
mean value theorem, there exists a γ ∈ [0, 1] such that

Ds
L

(Θ̂,Θ∗) = 〈∇L(Θ̂) − ∇L(Θ∗), Θ̂ −Θ∗〉

= vec(Θ̂ −Θ∗)ᵀ∇2L(Θ̂ + γ∆)vec(Θ̂ −Θ∗)

≥ κ−‖∆‖
2
F,

8



where the last step is due to the restricted eigenvalue condition and Lemma C.1. This completes the
proof. �

Applying Lemma C.2 gives

κ−‖Θ̂ −Θ
∗‖2F ≤ 〈∇L(Θ̂) − ∇L(Θ∗), Θ̂ −Θ∗〉. (C.2)

Next, note that the sub-differential of the norm ‖ · ‖`1 evaluated at Ψ = (Ψk`)1≤k,`≤d consists the set
of all symmetric matrices Γ = (Γk`)1≤k,`≤d such that Γk` = 0 if k = `, Γk` = sign(Ψk`) if k , ` and
Ψk` , 0, Γk` ∈ [−1,+1] if k , ` and Ψk` = 0. Then by the Karush-Kuhn-Tucker conditions, there
exists some Γ̂ ∈ ∂‖Θ̂‖`1 such that

∇L(Θ̂) + λΓ̂ = 0.

Plugging the above equality into (C.2) and rearranging terms, we obtain

κ−‖Θ̂ −Θ
∗‖2F + 〈∇L(Θ∗), Θ̂ −Θ∗〉︸                 ︷︷                 ︸

I

+ 〈λΓ̂, Θ̂ −Θ∗〉︸          ︷︷          ︸
II

≤ 0. (C.3)

We bound terms I and II separately, starting with I. Our first observation is

∇L(Θ∗) = (Θ∗Σ̂T1 − I)/2 + (Σ̂T1 Θ
∗ − I)/2.

By Theorem 3.1, we obtain that with probability at least 1 − 2δ,

‖∇L(Θ∗)‖max ≤ ‖Θ
∗‖1,1‖Σ̂

T
1 − Σ‖max ≤ 2M‖V‖max

√
2 log d + log δ−1

bn/2c
≤ λ/2.

Let S be the support of nonzero elements of Θ∗ and Sc be its complement with respect to the full
index set {(k, `) : 1 ≤ k, ` ≤ d}. For term I, separating the support of ∇L(Θ∗) and Θ̂ − Θ∗ to S and
Sc and applying the matrix Hölder inequality, we obtain

〈∇L(Θ∗), Θ̂ −Θ∗〉 = 〈(∇L(Θ∗))S, (Θ̂ −Θ∗)S〉 + 〈(∇L(Θ∗))Sc , (Θ̂ −Θ∗)Sc〉

≥ −‖(∇L(Θ∗))S‖F‖(Θ̂ −Θ∗)S‖F − ‖(∇L(Θ∗))Sc‖F‖(Θ̂ −Θ∗)Sc‖F.

For term II, separating the support of λΓ̂ and Θ̂ −Θ∗ to S and Sc, we have

〈λΓ̂, Θ̂ −Θ∗〉 = 〈λΓ̂S, (Θ̂ −Θ∗)S〉 + 〈λΓ̂Sc , (Θ̂ −Θ∗)Sc〉. (C.4)

Let 1A ∈ Rd×d be a d-by-d matrix such that 1k` = 1 if (k, `) ∈ A, 1k` = 0 otherwise. For the last
term in the above equality, we have

〈λΓ̂Sc , (Θ̂ −Θ)Sc〉 = 〈λ · 1Sc , |Θ̂Sc |〉 = 〈λ · 1Sc , |(Θ̂ −Θ)Sc |〉. (C.5)

Plugging (C.5) into (C.4) and applying the matrix Hölder inequality yields

〈λΓ̂, Θ̂ −Θ∗〉 = 〈λΓ̂S, (Θ̂ −Θ∗)S〉 + 〈λ · 1S c , |(Θ̂ −Θ∗)Sc |〉

= 〈λΓ̂S, (Θ̂ −Θ∗)S〉 + ‖λ · 1Sc‖F‖(Θ̂ −Θ∗)Sc‖F

≥ −‖λ · 1S‖F‖(Θ̂ −Θ∗)S‖F + λ
√

s‖(Θ̂ −Θ∗)Sc‖F.
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Plugging the bounds for I and II back into (C.3), we find

κ−‖Θ̂ −Θ
∗‖2F + (‖λ · 1Sc‖F − ‖(∇L(Θ∗))Sc‖F)‖(Θ̂ −Θ∗)Sc‖F

≤ (‖(∇L(Θ∗))S‖F + ‖λ · 1S‖F)‖Θ̂ −Θ∗‖F.

Since ‖(∇L(Θ∗))Sc‖F ≤ |S
c|1/2‖∇L(Θ∗)‖max ≤ |S

c|1/2λ = ‖λ · 1Sc‖F, it follows that

κ−‖Θ̂ −Θ
∗‖2F ≤ (‖(∇L(Θ∗))S‖F + ‖λ · 1S‖F)‖Θ̂ −Θ∗‖F.

Canceling ‖Θ̂ −Θ∗‖F on both sides yields

κ−‖Θ̂ −Θ
∗‖F ≤ ‖λ · 1S ‖F + ‖∇L(Θ∗)S‖F ≤ 3λ

√
s/2

under the scaling λ ≥ 2‖∇L(Θ∗)‖max. Plugging λ completes the proof. �

D Robust estimation and inference under factor models

As a complement to the three examples considered in the main text, in this section we discuss
robust covariance estimation (Section D.1) and inference (Section D.2) under factor models, which
might be of independent interest. In Section D.2, we provide a self-contained analysis to prove
the consistency of estimating the false discovery proportion, while there is no such a theoretical
guarantee in Fan et al. (2019) without using sample splitting.

D.1 Covariance estimation through factor models

Consider the approximate factor model of the form X = (X1, . . . , Xd)ᵀ = µ + B f + ε, from which
we observe

Xi = (Xi1, . . . , Xid)ᵀ = µ + B fi + εi, i = 1, . . . , n, (D.1)

where µ is a d-dimensional unknown mean vector, B = (b1, . . . , bd)ᵀ ∈ Rd×r is the factor loading
matrix, fi ∈ R

r is a vector of common factors to the ith observation and is independent of the
idiosyncratic noise εi. For more details about factor analysis, we refer the readers to Anderson and
Rubin (1956), Chamberlain and Rothschild (1983), Bai and Li (2012) and Fan and Han (2017),
among others. Factor pricing model has been widely used in financial economics, where Xik is the
excess return of fund/asset k at time i, fi’s are the systematic risk factors related to some specific
linear pricing model, such as the capital asset pricing model (CAPM) (Sharpe, 1964), and the Fama-
French three-factor model (Fama and French, 1993).

Under model (D.1), the covariance matrix of X can be written as

Σ = (σk`)1≤k,`≤d = Bcov( f )Bᵀ + Σε, (D.2)

where Σε = (σε,k`)1≤k,`≤d denotes the covariance matrix of ε = (ε1, . . . εd)ᵀ, which is typically
assumed to be sparse. When Σε = Id, model (D.1) is known as the strict factor model. To make the
model identifiable, following Bai and Li (2012) we assume that cov( f ) = Ir and that the columns of
B are orthogonal.
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We consider the robust estimation of Σ based on independent observations X1, . . . , Xn from
model (D.1). By (D.2) and the identifiability condition, Σ is comprised of two components: the
low-rank component BBᵀ and the sparse component Σε. Using a pilot robust covariance estimator
Σ̂T1 given in (3.3) or Σ̂H1 given in (3.13), we propose the following robust version of the principal
orthogonal complement thresholding (POET) procedure (Fan, Liao and Mincheva, 2013):

(i) Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂r be the top r eigenvalues of Σ̂H1 (or Σ̂T1 ) with corresponding eigenvec-
tors v̂1, v̂2, . . . , v̂r. Compute the principal orthogonal complement

Σ̂ε = (σ̂ε,k`)1≤k,`≤d = Σ̂H1 − V̂Λ̂V̂ᵀ, (D.3)

where V̂ = (̂v1, . . . , v̂r) and Λ̂ = diag (̂λ1, . . . , λ̂r).

(ii) To achieve sparsity, apply the adaptive thresholding method (Rothman, Levina and Zhu, 2009;
Cai and Liu, 2011) to Σ̂ε and obtain Σ̂Tε = (σ̂T

ε,k`)1≤k,`≤d such that

σ̂Tε,k` =

σ̂ε,k` if k = `,

sk`(σ̂ε,k`) if k , `,
(D.4)

where sk`(z) = sign(z)(|z|−λk`), z ∈ R is the soft thresholding function with λk` = λ(σ̂ε,kk σ̂ε,``)1/2

and λ > 0 being a regularization parameter.

(iii) Obtain the final estimator of Σ as Σ̂ = V̂Λ̂V̂ᵀ + Σ̂Tε .

Remark 1. The POET method (Fan, Liao and Mincheva, 2013) employs the sample covariance
matrix as an initial estimator and has desirable properties for sub-Gaussian data. For elliptical
distributions, Fan, Liu and Wang (2018) proposed to use the marginal Kendall’s tau to estimate Σ,
and to use its top r eigenvalues and the spatial Kendall’s tau to estimate the corresponding leading
eigenvectors. In the above robust POET procedure, we only need to compute one initial estimator of
Σ and moreover, optimal convergence rates can be achieved in high dimensions under finite fourth
moment conditions; see Theorem D.1.

Condition D.1. Under model (D.1), the latent factor f ∈ Rr and the idiosyncratic noise ε ∈ Rd are
independent. Moreover,

(i) (Identifiability) cov( f ) = Ir and the columns of B are orthogonal;

(ii) (Pervasiveness) there exist positive constants cl, cu and C1 such that

cl ≤ min
1≤`≤r
{λ`(BᵀB/d) − λ`+1(BᵀB/d)} ≤ cu with λr+1(BᵀB/d) = 0,

and max{‖B‖max, ‖Σε‖2} ≤ C1;

(iii) (Moment condition) max1≤`≤d kurt(X`) ≤ C2 for some constant C2 > 0;

(iv) (Sparsity) Σε is sparse in the sense that s := max1≤k≤d
∑d
`=1 I(σε,k` , 0) satisfies

s2 log d = o(n) and s2 = o(d) as n, d → ∞.
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Theorem D.1. Under Condition D.1, the robust POET estimator with

τk` �
√

n/(log d), 1 ≤ k, ` ≤ d, and λ � wn,d :=
√

log(d)/n + d−1/2

satisfies

‖Σ̂Tε − Σε‖max = OP(wn,d), ‖Σ̂Tε − Σε‖2 = OP(swn,d), (D.5)

‖Σ̂ − Σ‖max = OP(wn,d) and ‖Σ̂ − Σ‖2 = OP(dwn,d) (D.6)

as n, d → ∞.

D.2 Factor-adjusted multiple testing

Here we consider the problem of simultaneously testing the hypotheses

H0k : µk = 0 versus H1k : µk , 0, for k = 1, . . . , d, (D.7)

under model (D.1). Although the key implication from the multi-factor pricing theory is that the
intercept µk should be zero, known as the “mean-variance efficiency” pricing, for any asset k, an
important question is whether such a pricing theory can be validated by empirical data. In fact,
a very small proportion of µk’s might be nonzero according to the Berk and Green equilibrium
(Berk and Green, 2004). Various statistical methods have been proposed to identify those positive
µk’s (Barras, Scaillet and Wermer, 2010; Fan and Han, 2017; Lan and Du, 2019). These works
assume that both the factor and idiosyncratic noise follow multivariate normal distributions. To
accommodate the heavy-tailed character of empirical data, we develop a robust multiple testing
procedure that controls the overall false discovery rate or false discovery proportion.

For each 1 ≤ k ≤ d, let Tk be a generic test statistic for testing the individual hypothesis
H0k : µk = 0. For any threshold level z > 0, we reject the jth hypothesis whenever |T j| ≥ z. The
numbers of total discoveries R(z) and false discoveries V(z) are defined by

R(z) =

d∑
k=1

I(|Tk| ≥ z) and V(z) =
∑
k∈H0

I(|Tk| ≥ z), (D.8)

respectively, where H0 = {1 ≤ k ≤ d : µk = 0}. The main object of interest is the false discovery
proportion (FDP), given by

FDP(z) = V(z)/R(z).

Throughout we use the convention 0/0 = 0. Note that R(z) is observable given all the test statistics,
while V(z) is an unobservable random variable that needs to be estimated. For testing individual
hypotheses H0k, the standardized means Zk, where Zk = n−1/2 ∑n

i=1 Xik, are sensitive to the tails of
the sampling distributions. In particular, when the number of features d is large, stochastic outliers
from the test statistics Zk can be so large that they are mistakenly regarded as discoveries. Motivated
by recent advances on robust estimation and inference (Catoni, 2012; Zhou et al., 2018), we consider
the following robust M-estimator of µk:

µ̂k = argmin
θ∈R

n∑
i=1

`τk (Xik − θ) for some τk > 0. (D.9)
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The corresponding test statistic is then given by Tk =
√

n µ̂k for k = 1, . . . , d.
Based on the law of large numbers, we define the approximate FDP by

FDPA(z) =
1

R(z)

d∑
k=1

{
Φ

( −z +
√

n bᵀk f√
σkk − ‖bk‖

2
2

)
+ Φ

( −z −
√

n bᵀk f√
σkk − ‖bk‖

2
2

)}
, (D.10)

where f = (1/n)
∑n

i=1 fi. It is shown in the appendix that the approximate FDP in (D.10) serves as
a conservative surrogate for the true FDP.

Note that the approximate FDP defined in (D.10) depends on a number of unknown parameters,
say {bk, σkk}

d
k=1 and f . In this section, we describe robust procedures to estimate these quantities

using the only observations X1, . . . , Xn.

(a) Compute the Huber-type covariance estimator Σ̂H1 = (σ̂H1,k`)1≤k,`≤d (or the truncated estimator

Σ̂T1 ), and let λ̂1 ≥ · · · ≥ λ̂r and v̂1, . . . , v̂r be its top r eigenvalues and the corresponding
eigenvectors, respectively.

(b) Compute B̂ = (̂λ1/2
1 v̂1, . . . , λ̂

1/2
r v̂r) ∈ Rd×r and û =

√
n (B̂ᵀB̂)−1B̂ᵀX ∈ Rr, which serve as

estimators of B and
√

n f , respectively. Here X = (1/n)
∑n

i=1 Xi.

(c) Denote by b̂1, . . . , b̂d the d rows of B̂. For any z ≥ 0, we estimate the approximate FDP
FDPA(z) by

F̂DPA(z) =
1

R(z)

d∑
k=1

{
Φ

(−z + b̂ᵀk û√
σ̂ε,kk

)
+ Φ

(−z − b̂ᵀk û√
σ̂ε,kk

)}
, (D.11)

where σ̂ε,kk = σ̂H1,kk − ‖̂bk‖
2
2 for k = 1, . . . , d.

The construction of B̂ is based on the observation that principal component analysis and factor
analysis are approximately equivalent under the pervasive assumption in high dimensions (Fan, Liao
and Mincheva, 2013). To estimate f , note from model (D.1) that X = µ+B f +ε, where µ is assumed
to be sparse and therefore is ignored for simplicity.

Theorem D.2. Under model (D.1), assume that f and ε are independent zero-mean random vectors
and let s1 = ‖µ‖0. Assume (i)–(iii) of Condition D.1 hold, and that (n, d, s1) satisfies log d = o(n)
and ns1 = o(d) as n, d → ∞. Then for any z ≥ 0,

F̂DPA(z)/FDPA(z)
P
−→ 1 as n, d → ∞. (D.12)

D.3 Proof of Theorem D.1

The proof is based on Theorem 2.1 and (A.1) in Fan, Liu and Wang (2018), which provides high
level results for the generic POET procedure. To that end, it suffices to show that with properly
chosen τk`,

‖Σ̂H1 − Σ‖max = OP{n−1/2(log d)1/2}, max
1≤`≤r

|̂λ`/λ` − 1| = OP{n−1/2(log d)1/2} (D.13)

and max
1≤`≤r

‖̂v` − v`‖∞ = OP{(nd)−1/2(log d)1/2}, (D.14)
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where λ1 ≥ · · · ≥ λr are the top r eigenvalues of Σ and v1, . . . , vr are the corresponding eigenvectors.
First, applying Theorem 3.3 with τk` �

√
n/(log d) implies that ‖Σ̂H1 − Σ‖max . n−1/2(log d)1/2

with probability at least 1−d−1. This verifies the first criterion in (D.13). Next, by Weyl’s inequality
and the inequality ‖A‖2 ≤ ‖A‖1,1 for symmetric matrices, we have

max
1≤`≤r

|̂λ` − λ`| ≤ ‖Σ̂
H
1 − Σ‖2 ≤ ‖Σ̂

H
1 − Σ‖1,1 ≤ d‖Σ̂H1 − Σ‖max.

Let λ1 ≥ · · · ≥ λr be the top r eigenvalues of BBᵀ, and therefore of BᵀB. Note that, by Weyl’s
inequality, max1≤`≤r |λ` − λ`| ≤ ‖Σε‖2. It thus follows from Condition D.1 that

min
1≤`≤r−1

|λ` − λ`+1| � d and λr � d as d → ∞.

Together, the last two displays imply max1≤`≤r |̂λ`/λ` − 1| . n−1/2(log d)1/2 with probability at least
1 − d−1. Therefore, the second criterion in (D.13) is fulfilled.

For (D.14), applying Theorem 3 and Proposition 3 in Fan, Wang and Zhong (2018) we arrive at

max
1≤`≤r

‖̂v` − v`‖∞

. d−3/2(r4‖Σ̂H1 − Σ‖∞,∞ + r3/2‖Σ̂H1 − Σ‖2) . r4d−1/2‖Σ̂H1 − Σ‖max.

This validates (D.14).
In summary, (D.5) and the first bound in (D.6) follow from Theorem 2.1 and (A.1) in Fan, Liu

and Wang (2018), and the second bound in (D.6) follows directly from the fact that ‖Σ̂H1 − Σ‖2 ≤
‖Σ̂H1 − Σ‖1,1 ≤ d‖Σ̂H1 − Σ‖max. �

D.4 Asymptotic property of FDP

In this section, we show that the approximate FDP in (D.10) serves as a conservative surrogate for
the true FDP.

Condition D.2. Under model (D.1), f are ε are independent zero-mean random vectors. (i) cov( f ) =

Ir and ‖ f‖ψ2 = supu∈Sr−1 ‖uᵀ f‖ψ2 ≤ C f for some constant C f > 0; (ii) the correlation matrix
Rε = (%ε,k`)1≤k,`≤d of ε satisfies d−2 ∑

1≤k,`≤d %ε,k` ≤ C0d−δ0 for some constants C0, δ0 > 0; (iii)
d = d(n) → ∞ and log d = o(n1/2) as n → ∞, and lim infn→∞

d0
d > 0, where d0 =

∑d
k=1 I(µk = 0);

(iv) Cl ≤ σε,kk ≤ v1/2
k ∨ σkk ≤ Cu for all 1 ≤ k ≤ d, where vk = E(ε4

k) and Cu,Cl are positive
constants.

Theorem D.3. Assume that Condition D.2 holds. In (D.9), let τk = ak
√

n/ log(nd) with ak ≥ σ
1/2
kk

for k = 1, . . . , d. Then, as n, d → ∞,

V(z)
d0

=
1
d0

∑
k∈H0

{
Φ

(−z +
√

nbᵀk f
√
σε,kk

)
+ Φ

(z −
√

n bᵀk f
√
σε,kk

)}
+ OP

[
1

d(δ0∧1)/2 +
log(nd)
√

n
+

{ log(nd)
n

}1/4]
(D.15)
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and

R(z)
d

=
1
d

d∑
k=1

{
Φ

(−z +
√

n(µk + bᵀk f )
√
σε,kk

)
+ Φ

(−z −
√

n(µk + bᵀk f )
√
σε,kk

)}
+ OP

[
1

d(δ0∧1)/2 +
log(nd)
√

n
+

{ log(nd)
n

}1/4]
(D.16)

uniformly over z ≥ 0. In addition, for any z ≥ 0 it holds

FDP(z) = FDPorc(z) + oP(1) as n, d → ∞, (D.17)

where

FDPorc(z) :=
1

R(z)

∑
k∈H0

{
Φ

( −z +
√

n bᵀk f√
σkk − ‖bk‖

2
2

)
+ Φ

( −z −
√

n bᵀk f√
σkk − ‖bk‖

2
2

)}
.

D.4.1 Preliminaries

To prove Theorem D.3, we need the following results on the robust estimators µk’s given in (D.9).
Define uk = Xk − µk = bᵀk f + εk for k = 1, . . . , d. Assume that E( f ) = 0, E(εk) = 0 and f are εk are
independent. Then we have E(uk) = 0 and E(u2

k) = σkk = ‖bk‖
2
2 + σε,kk.

The first lemma is Theorem 5 in Fan, Li and Wang (2017) regarding the concentration of the
robust mean estimator.

Lemma D.1. For every 1 ≤ k ≤ d and t > 0, the estimator µ̂k in (D.9) with τk = ak(n/t)1/2 for
ak ≥ σ

1/2
kk satisfies |̂µk − µk| ≤ 4ak(t/n)1/2 with probability at least 1 − 2e−t provided n ≥ 8t.

The next result provides a nonasymptotic Bahadur representation for µ̂k, which follows directly
from Lemma D.1 and Theorem 2.1 in Zhou et al. (2018). Let uik = bᵀk fi + εik for i = 1, . . . , n and
k = 1, . . . , d.

Lemma D.2. Under the conditions of Lemma D.1, it holds for every 1 ≤ k ≤ d that∣∣∣∣∣√n (̂µk − µk) −
1
√

n

n∑
i=1

ψτk (uik)
∣∣∣∣∣ ≤ C

akt
√

n
(D.18)

with probability at least 1 − 3e−t as long as n ≥ 8t, where C > 0 is an absolute constant and ψτ(·) is
given in (3.1).

Let τk be as in Lemma D.1 and write

vk = E(ε4
k), ξk = ψk(uk) for k = 1, . . . , d. (D.19)

Here ξk are truncated versions of uk. The next result shows that the differences between the first two
(conditional) moments of uk and ξk given f decay as τk grows.

Lemma D.3. Assume that vk < ∞ for k = 1, . . . , d.
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1. On the event Gk := {|bᵀk f | ≤ τk/2}, the following inequalities hold almost surely:

|E f (ξk) − bᵀk f | ≤ min(2τ−1
k σε,kk, 8τ−3

k vk) (D.20)

and σε,kk − 4τ−2
k (vk + σ2

ε,kk) ≤ var f (ξk) ≤ σε,kk, (D.21)

where E f (·) and var f (·) denote the conditional mean and variance, separately.

2. On the event Gk ∩ G`, the following holds almost surely:

|cov f (ξk, ξ`) − σε,k`| ≤ C
vk ∨ v`

(τk ∧ τ`)2 , (D.22)

where C > 0 is an absolute constant.

Proof of Lemma D.3. First we prove (D.20) and (D.21). Fix k and let τ = τk for simplicity. Since
εk and f are independent, we have

E fξk − bᵀk f

= −E f (εk + bᵀk f − τ)I(εk > τ − bᵀk f ) + E f (−εk − bᵀk f − τ)I(εk < −τ − bᵀk f ).

Therefore, on the event Gk, it holds for any 2 ≤ q ≤ 4 that

|E fξk − bᵀk f | ≤ E f {|εk|I(|εk| > τ − |b
ᵀ
k f |)} ≤ (τ − |bᵀk f |)1−q E(|εk|

q)

almost surely. This proves (D.20) by taking q to be 2 and 4. For the conditional variance, by (D.20)
and the decomposition E f (ξk − bᵀk f )2 = var f (ξk) + (E fξk − bᵀk f )2, we have

E f (ξk − bᵀk f )2 −
σ2
ε,kk

(τ − |bᵀk f |)2 ≤ var f (ξk) ≤ E f (ξk − bᵀk f )2. (D.23)

Note that ξk − bᵀk f can be written as

εkI(|bᵀk f + εk| ≤ τ) + (τ − bᵀk f )I(bᵀk f + εk > τ) − (τ + bᵀk f )I(bᵀk f + εk < −τ).

It follows that

(ξk − bᵀk f )2

= ε2
k I(|bᵀk f + εk| ≤ τ) + (τ − bᵀk f )2I(bᵀk f + εk > τ) + (τ + bᵀk f )2I(bᵀk f + εk < −τ).

Taking conditional expectations on both sides gives

E f (ξk − bᵀk f )2 = E(ε2
k) − E f {ε

2
k I(|bᵀk f + εk| > τ)}

+ (τ − bᵀk f )2P f (εk > τ − bᵀk f ) + (τ + bᵀk f )2P f (εk < −τ − bᵀk f ).

Using the identity that u2 = 2
∫ u

0 t dt for any u > 0, we have

E f {ε
2
k I(bᵀk f + εk > τ)}

= 2E f

∫ ∞

0
I(εk > t)I(εk > τ − bᵀk f )t dt

= 2E f

∫ τ−bᵀk f

0
I(εk > τ − bᵀk f )t dt + 2E f

∫ ∞

τ−bᵀk f
I(εk > t)t dt

= (τ − bᵀk f )2P f (εk > τ − bᵀk f ) + 2
∫ ∞

τ−bᵀk f
P(εk > t)t dt.
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It can be similarly shown that

E f {ε
2
k I(bᵀk f + εk < −τ)} = (τ + bᵀk f )2P f (εk < −τ − bᵀk f ) + 2

∫ ∞

τ+bᵀk f
P(−εk > t)t dt.

Together, the last three displays imply

0 ≥ E f (ξk − bᵀk f )2 − E(ε2
k)

≥ −2
∫ ∞

τ−|bᵀk f |
P(|εk| > t)t dt ≥ −2vk

∫ ∞

τ−|bᵀk f |

dt
t3 = −

vk

(τ − |bᵀk f |)2 .

Combining this with (D.23) and (D.20) proves (D.21).
Next, we study the covariance cov f (ξk, ξ`) for k , `, which can be written as

cov f (ξk, ξ`) = E f (ξk − bᵀk f + bᵀk f − E fξk)(ξ` − bᵀ
`

f + bᵀ
`

f − E fξ`)

= E f (ξk − bᵀk f )(ξ` − bᵀ
`

f )︸                         ︷︷                         ︸
Π1

− (E fξk − bᵀk f )(E fξ` − bᵀ
`

f )︸                            ︷︷                            ︸
Π2

.

For Π2, it follows immediately from (D.20) that |Π2| . (τkτ`)−1σε,kk σε,`` almost surely on the event
Gk` := {|bᵀk f | ≤ τk/2} ∩ {|b

ᵀ
`

f | ≤ τ`/2}. It remains to consider Π1. Recall that ξk − bᵀk f = εkI(|uk| ≤

τk) + (τk − bᵀk f )I(uk > τk) − (τk + bᵀk f )I(uk < −τk), where uk = bᵀk f + εk. Then, Π1 can be written
as

E fεkε`I(|uk| ≤ τk, |u`| ≤ τ`) + (τ` − bᵀ
`

f )E fεkI(|uk| ≤ τ, u` > τ)

− (τ` + bᵀ
`

f )E fεkI(|uk| ≤ τk, u` < −τ`) + (τk − bᵀk f )E fε`I(uk > τk, |u`| ≤ τ`)

+ (τk − bᵀk f )(τ` − bᵀ
`

f )E f I(uk > τk, u` > τ`) − (τk − bᵀk f )(τ` + bᵀ
`

f )E f I(uk > τk, u` < −τ`)

− (τk + bᵀk f )E fε`I(uk < −τk, |u`| ≤ τ`) − (τk + bᵀk f )(τ` − bᵀ
`

f )E f I(uk < −τk, u` > τ`)

+ (τk + bᵀk f )(τ` + bᵀ
`

f )E f I(uk < −τk, u` < −τ`). (D.24)

For the first term in (D.24), note that

E fεkε`I(|uk| ≤ τk, |u`| ≤ τ`)

= cov(εk, ε`) − E fεkε`I(|uk| > τk) − E fεkε`I(|u`| > τ`) + E fεkε`I(|uk| > τk, |u`| > τ`),

where |E fεkε`I(|uk| > τk)| ≤ (τk − |b
ᵀ
k f |)−2E(|εk|

3|ε`|) ≤ 4τ−2
k v3/4

k v1/4
`

and

|E fεkε`I(|uk| > τk, |u`| > τ`)| ≤ (τk − |b
ᵀ
k f |)−1(τ` − |b

ᵀ
`

f |)−1E(ε2
kε

2
` ) ≤ 4τ−1

k τ−1
` v1/2

k v1/2
`

almost surely on Gk`. Hence,

|E fεkε`I(|uk| ≤ τk, |u`| ≤ τ`) − cov(εk, ε`)| . (τk ∧ τ`)−2

holds almost surely on the same event. For the remaining terms in (D.24), it can be similarly derived
that, almost surely on the same event,

|E fεkI(|uk| ≤ τk, u` > τ`)| ≤ |τ` − bᵀ
`

f |−3E(|εk||ε`|
3),

|E fεkI(|uk| ≤ τk, u` < −τ`)| ≤ |τ` + bᵀ
`

f |−3E(|εk||ε`|
3),

and E f I(uk > τk, ξ` < −τ`) ≤ |τk − bᵀk f |−2|τ` + bᵀ
`

f |−2E(ε2
kε

2
` ).

Putting the pieces together, we arrive at |Π1 − cov(εk, ε`)| . (τk ∧ τ`)−2(vk ∨ v`) almost surely on
Gk`. This proves the stated result (D.22). �
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The next lemma provides several concentration results regarding the factors fi’s and their func-
tionals.

Lemma D.4. Assume that (i) of Condition D.2 holds. Then, for any t > 0,

P
{

max
1≤i≤n

‖ fi‖2 > C1C f (r + log n + t)1/2
}
≤ e−t, (D.25)

P{‖
√

n f‖2 > C2C f (r + t)1/2} ≤ e−t, (D.26)

and P[‖Σ̂ f − Ir‖2 > max{C3C2
f n
−1/2(r + t)1/2,C2

3C4
f n
−1(r + t)}] ≤ 2e−t, (D.27)

where f = (1/n)
∑n

i=1 fi, Σ̂ f = (1/n)
∑n

i=1 fi fᵀi and C1–C3 are absolute constants.

Proof of Lemma D.4. Under (i) of Condition D.2, it holds for any u ∈ Rr that

Eeuᵀ fi ≤ eCC2
f ‖u‖

2
2 for i = 1, . . . , n,

and Ee
√

n uᵀ f =

n∏
i=1

Een−1/2uᵀ fi ≤

n∏
i=1

eCC2
f n−1‖u‖22 ≤ eCC2

f ‖u‖
2
2 ,

where C > 0 is an absolute constant. Using Theorem 2.1 in Hsu, Kakade and Zhang (2012), we
derive that for any t > 0,

P{‖ fi‖
2
2 > 2CC2

f (r + 2
√

rt + 2t)} ≤ e−t and P{‖
√

n f‖22 > 2CC2
f
(
r + 2

√
rt + 2t)} ≤ e−t.

Then, (D.25) follows from the first inequality and the union bound, and the second inequality leads
to (D.26) immediately. Finally, applying Theorem 5.39 in Vershynin (2012) gives (D.27). �

D.4.2 Proof of Theorem D.3

First we introduce the following notations:

vk = E(ε4
k), κε,k = vk/σ

2
ε,kk, uik = bᵀk fi + εik, k = 1, . . . , d, i = 1, . . . , n.

Let t ≥ 1 and set τk = ak(n/t)1/2 with ak ≥ σ
1/2
kk for k = 1, . . . , d. In view of Lemma D.2, define the

event

E1(t) =

d⋂
k=1

{∣∣∣∣∣√n (̂µk − µk) −
1
√

n

n∑
i=1

ψτk (uik)
∣∣∣∣∣ ≤ C

akt
√

n

}
, (D.28)

such that P{E1(t)c} ≤ 3de−t. Moreover, by Lemma D.4, let E2(t) be the event that the following
hold:

max
1≤i≤n

‖ fi‖2 ≤ C1C f (r + log n + t)1/2, ‖
√

n f‖2 ≤ C2C f (r + t)1/2,

and ‖Σ̂ f − Ir‖2 ≤ max{C3C2
f n
−1/2(r + t)1/2,C2

3C4
f n
−1(r + t)}. (D.29)

By the union bound, P{E2(t)c} ≤ 4e−t.
Now we are ready to prove (D.15). The proof of (D.16) follows the same argument, and thus is

omitted. For k = 1, . . . , d, define

Bk =
√

n bᵀk f , Vk =
1
√

n

n∑
i=1

Vik :=
1
√

n

n∑
i=1

{ψτk (uik) − E fiψτk (uik)}, (D.30)
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and Rk = n−1/2 ∑n
i=1{E fiψτk (uik) − bᵀk fi}, where E fi(·) := E(·| fi). On the event E1(t),

|Tk − (Vk + Bk + Rk)| ≤ Cakn−1/2t for all 1 ≤ k ≤ d. (D.31)

On E2(t), it holds max1≤i≤n |b
ᵀ
k fi| ≤ C1C f ‖bk‖2(r + log n + t)1/2 ≤ C1C fσ

1/2
kk (r + log n + t)1/2, which

further implies

max
1≤i≤n

|bᵀk fi| ≤ τk/2 for all 1 ≤ k ≤ d (D.32)

as long as n ≥ 4(C1C f )2(r + log n + t)t. Then, it follows from Lemma D.3 that

|Rk| ≤
√

n max
1≤i≤n

|E fiψτk (uik) − bᵀk fi| ≤ 8
√

n τ−3
k vk ≤ 8σ−3/2

kk vkn−1t3/2 (D.33)

holds almost surely on E2(t) for all 1 ≤ k ≤ d. Together, (D.31) and (D.33) imply that for any z ≥ 0,∑
k∈H0

I
(
|Vk + Bk| ≥ z + Cakn−1/2t + 8κε,kσ

1/2
ε,kkn−1t3/2

)
≤ V(z) ≤

∑
k∈H0

I
(
|Vk + Bk| ≥ z −Cakn−1/2t − 8κε,kσ

1/2
ε,kkn−1t3/2

)
(D.34)

holds almost surely on E1(t) ∩ E2(t). In view of (D.34), we will instead deal with Ṽ+(z) and Ṽ−(z),
where

Ṽ+(z) :=
∑
k∈H0

I(Vk ≥ z − Bk) and Ṽ−(z) :=
∑
k∈H0

I(Vk ≤ −z − Bk)

are such that Ṽ+(z) + Ṽ−(z) =
∑

k∈H0 I(|Vk + Bk| ≥ z).
In the following, we will focus on Ṽ+(z) (Ṽ−(z) can be dealt with in the same way). Observe

that, conditional on Fn := { fi}
n
i=1, I(V1 ≥ z − B1), . . . , I(Vd ≥ z − Bd) are weakly correlated random

variables. Define Yk = I(Vk ≥ z − Bk) and Pk = E(Yk|Fn) for k = 1, . . . , d. To prove the consistency
of Ṽ+(z), we calculate its variance:

var
( 1
d0

∑
k∈H0

Yk

∣∣∣∣∣Fn

)
= E

[{ 1
d0

Ṽ+(z) −
1
d0

∑
k∈H0

Pk

}2∣∣∣∣∣Fn

]
=

1
d2

0

∑
k∈H0

var(Yk|Fn) +
1
d2

0

∑
k,`∈H0:k,`

cov(Yk,Y`|Fn)

≤
1

4d0
+

1
d2

0

∑
k,`∈H0:k,`

{E(YkY`|Fn) − PkP`} (D.35)

almost surely. In what follows, we study Pk and E(YkY`|Fn) separately, starting with the former. For
each k, Vk is a sum of conditionally independent zero-mean random variables given Fn. Define

ν2
k = var(Vk|Fn) =

1
n

n∑
i=1

ν2
ik with ν2

ik = var(Vik|Fn).

Then, it follows from the Berry-Esseen theorem that

sup
z∈R
|P(Vk ≤ νkx|Fn) − Φ(x)|

.
1

ν3
kn3/2

n∑
i=1

E{|ψτk (uik)|3|Fn} .
1

ν3
kn3/2

n∑
i=1

(|bᵀk fi|
3 + E|εik|

3) (D.36)
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almost surely. By (D.32) and (D.21), it holds

1 − 4(1 + κε,k)n−1t ≤ σ−1
ε,kkν

2
k ≤ 1 (D.37)

almost surely on E2(t) for all 1 ≤ k ≤ d. Combining this with (D.29) and (D.36) gives∣∣∣∣∣Pk − Φ

(
−z + Bk

νk

)∣∣∣∣∣ . κ3/4
ε,k

1
√

n
+ σ−3/2

ε,kk ‖bk‖
3
2

√
r + log n + t

n

almost surely on E2(t) for all 1 ≤ k ≤ d as long as n ≥ 2C2
3C4

f (r + t) ∨ 8(1 + κε,max)t, where

κε,max = max1≤`≤d κε,`. By the mean value theorem, there exists some ηk ∈ [σ−1/2
ε,kk , ν

−1
k ] such that∣∣∣∣∣Φ(

−z + Bk

νk

)
− Φ

(
−z + Bk
√
σε,kk

)∣∣∣∣∣ = φ(ηk|z − Bk|)
ηk|z − Bk|

ηk

∣∣∣∣∣ 1
νk
−

1
√
σε,kk

∣∣∣∣∣ . κε,kt
n
.

Together, the last two displays imply that almost surely on E2(t),∣∣∣∣∣Pk − Φ

(
−z + Bk
√
σε,kk

)∣∣∣∣∣ . κε,k( 1
√

n
+

t
n

)
+ σ−3/2

ε,kk ‖bk‖
3
2

√
r + log n + t

n
(D.38)

uniformly for all 1 ≤ k ≤ d and z ≥ 0.
Next we consider E(YkY`|Fn) = P(Vk ≥ z− Bk,V` ≥ z− B`|Fn). Define bivariate random vectors

Vi = (ν−1
k Vik, ν

−1
` Vi`)ᵀ for i = 1, . . . , n, where Vik,Vi` are as in (D.30). Observe that V1, . . . ,Vn are

conditionally independent random vectors given Fn. Denote by Θ = (θuv)1≤u,v≤2 the conditional
covariance matrix of n−1/2 ∑n

i=1 Vi = (ν−1
k Vk, ν

−1
` V`)ᵀ given Fn, such that θ11 = θ22 = 1 and θ12 =

θ21 = (νkν`n)−1 ∑n
i=1 cov fi(Vik,Vi`). By (D.22), (D.32) and (D.37),

|θ12 − rε,k`| . (κε,k ∨ κε,`)n−1t (D.39)

holds almost surely on E2(t) for all 1 ≤ k , ` ≤ d and sufficient large n, say n & κε,maxt. Let
G = (G1,G2)ᵀ be a Gaussian random vector with E(G) = 0 and cov(G) = Θ. Applying Theorem 1.1
in Bentkus (2005) and (D.29), we have

sup
x,y∈R
|P(Vk ≥ νkx,V` ≥ ν`y|Fn) − P(G1 ≥ x,G2 ≥ y)|

.
1

n3/2

n∑
i=1

E‖Θ−1/2Vi‖
3
2

.
1

(σε,kkn)3/2

n∑
i=1

(E|εik|
3 + |bᵀk fi|

3) +
1

(σε,``n)3/2

n∑
i=1

(E|εi`|
3 + |bᵀ

`
fi|

3)

.
κε,k + κε,`
√

n
+ (σ−3/2

ε,kk ‖bk‖
3
2 + σ−3/2

ε,``
‖b`‖32)

√
r + log n + t

n

almost surely on E2(t) for all 1 ≤ k , ` ≤ d. In particular, taking x = ν−1
k (z−Bk) and y = ν−1

` (z−B`)
gives

|E(YkY`|Fn) − P{G1 ≥ ν
−1
k (z − Bk),G2 ≥ ν

−1
` (z − B`)}|

.
κε,k + κε,`
√

n
+ (σ−3/2

ε,kk ‖bk‖
3
2 + σ−3/2

ε,``
‖b`‖32)

√
r + log n + t

n
(D.40)
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almost surely on E2(t). In addition, it follows from Corollary 2.1 in Li and Shao (2002) that

|P(G1 ≥ x,G2 ≥ y) − {1 − Φ(x)}{1 − Φ(y)}| ≤
|θ12|

4
e−(x2+y2)/(2+2|θ12 |) ≤

|θ12|

4
(D.41)

for all x, y ∈ R.
Substituting the bounds (D.38), (D.39), (D.40) and (D.41) into (D.35), we obtain

E
[{ 1

d0
Ṽ+(z) −

1
d0

∑
k∈H0

Pk

}2∣∣∣∣∣Fn

]

.
1
d2

0

∑
k,`∈H0:k,`

%ε,k` +
1
d0

+
κε,max
√

n
+
κε,maxt

n
+ max

1≤k≤d
σ−3/2
ε,kk ‖bk‖

3
2

√
r + log n + t

n

and ∣∣∣∣∣ 1
d0

∑
k∈H0

Pk −
1
d0

∑
k∈H0

Φ

(
−z + Bk
√
σε,kk

)∣∣∣∣∣
.
κε,max
√

n
+
κε,maxt

n
+ max

1≤k≤d
σ−3/2
ε,kk ‖bk‖

3
2

√
r + log n + t

n

almost surely on E2(t). Similar bounds can be derived for

var
( 1
d0

Ṽ−(z)
∣∣∣∣∣Fn

)
and

1
d0
E{Ṽ−(z)|Fn}.

Taking t = log(nd) so that P{E1(t)c} ≤ 3n−1 and P{E2(t)c} ≤ 4(nd)−1. Under Condition D.2, it
follows that

1
d0

Ṽ+(z) =
1
d0

∑
k∈H0

Φ

(
−z + Bk
√
σε,kk

)
+ OP[d−(1∧δ0)/2 + n−1/4{log(nd)}1/4],

1
d0

Ṽ−(z) =
1
d0

∑
k∈H0

Φ

(
−z − Bk
√
σε,kk

)
+ OP[d−(1∧δ0)/2 + n−1/4{log(nd)}1/4]

uniformly over all z ≥ 0. This, together with (D.34) and the fact that |Φ(z1) −Φ(z2)| ≤ (2π)−1/2|z1 −

z2|, proves (D.15). �

D.5 Proof of Theorem D.2

Let b(1), . . . , b(r) ∈ Rd be the columns of B. Without loss of generality, assume that ‖b(1)‖2 ≥

· · · ≥ ‖b(r)‖2. Under (i) of Condition D.1, BBᵀ has non-vanishing eigenvalues {λ` := ‖b(`)‖22}
r
`=1

with eigenvectors {v` := b(`)/‖b(`)‖2}
r
`=1, and B = (b1, . . . , bd)ᵀ = (λ

1/2
1 v1, . . . , λ

1/2
r vr). Moreover,

write B̂ = (̂b1, . . . , b̂d)ᵀ = (̂λ1/2
1 v̂1, . . . , λ̂

1/2
r v̂r) with v̂` = (̂v`1, . . . , v̂`d)ᵀ for ` = 1, . . . , r and b̂k =

(̂λ1/2
1 v̂1k, . . . , λ̂

1/2
r v̂rk)ᵀ for k = 1, . . . , d.

A key step in proving (D.12) is the derivation of an upper bound on the estimation error ∆d :=
max1≤k≤d |‖̂bk‖2−‖bk‖2|. By Weyl’s inequality and the decomposition that Σ̂H1 = BBᵀ+(Σ̂H1 −Σ)+Σε,

max
1≤`≤r

|̂λ` − λ`| ≤ ‖Σ̂
H
1 − Σ‖2 + ‖Σε‖2. (D.42)
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Applying Corollary 1 in Yu, Wang and Samworth (2015) yields that, for every 1 ≤ ` ≤ r,

‖̂v` − v`‖2 ≤
23/2(‖Σ̂H1 − Σ‖2 + ‖Σε‖2)

min(λ`−1 − λ`, λ` − λ`+1)
,

where we set λ0 = ∞ and λr+1 = 0. Under (ii) of Condition D.1, it follows that

max
1≤`≤r

‖̂v` − v`‖2 . d−1(‖Σ̂H1 − Σ‖2 + ‖Σε‖2). (D.43)

Moreover, apply Theorem 3 and Proposition 3 in Fan, Wang and Zhong (2018) to reach

max
1≤`≤r

‖̂v` − v`‖∞ . r4(d−1/2‖Σ̂H1 − Σ‖max + d−1‖Σε‖2). (D.44)

Note that, under (ii) of Condition D.1,

‖v`‖∞ = ‖b(`)‖∞/‖b(`)‖2 ≤ ‖B‖max/‖b(`)‖2 . d−1/2 for all ` = 1, . . . , r. (D.45)

Define b̃k = (λ
1/2
1 v̂1k, . . . , λ

1/2
r v̂rk)ᵀ. By the triangular inequality,

‖̂bk − bk‖2 ≤ ‖̂bk − b̃k‖2 + ‖b̃k − bk‖2

=

{ r∑
`=1

(̂λ1/2
`
− λ

1/2
` )2 v̂2

`k

}1/2
+

{ r∑
`=1

λ` (̂v`k − v`k)2
}1/2

≤ r1/2
(

max
1≤`≤r

|̂λ1/2
`
− λ

1/2
` |‖̂v`‖∞ + max

1≤`≤r
λ

1/2
` ‖̂v` − v`‖∞

)
.

This, together with (D.42)–(D.45) and Theorem 3.3, implies

∆d ≤ max
1≤k≤d

‖̂bk − bk‖2 = OP(wn,d). (D.46)

With the above preparations, now we are ready to prove (D.12). To that end, define ũ =
√

n (BᵀB)−1BᵀX, so that for every 1 ≤ k ≤ d,

bᵀk ũ =
√

n bᵀk f +
√

n bᵀk (BᵀB)−1Bᵀµ +
√

n bᵀk (BᵀB)−1Bᵀε.

Consider the decomposition∣∣∣∣∣Φ(−z + b̂ᵀk û√
σ̂ε,kk

)
− Φ

(−z +
√

n bᵀk f
√
σε,kk

)∣∣∣∣∣
≤

∣∣∣∣∣Φ(−z + b̂ᵀk û√
σ̂ε,kk

)
− Φ

(−z + bᵀk ũ
√
σε,kk

)∣∣∣∣∣ +

∣∣∣∣∣Φ(−z + bᵀk ũ
√
σε,kk

)
− Φ

(−z +
√

n bᵀk f
√
σε,kk

)∣∣∣∣∣
≤

∣∣∣∣∣Φ(−z + bᵀk ũ√
σ̂ε,kk

)
− Φ

(−z + bᵀk ũ
√
σε,kk

)∣∣∣∣∣
+

∣∣∣∣∣Φ(−z + b̂ᵀk û√
σ̂ε,kk

)
− Φ

(−z + bᵀk ũ√
σ̂ε,kk

)∣∣∣∣∣ +

∣∣∣∣∣Φ(−z + bᵀk ũ
√
σε,kk

)
− Φ

(−z +
√

n bᵀk f
√
σε,kk

)∣∣∣∣∣
:= ∆k1 + ∆k2 + ∆k3. (D.47)

In the following, we deal with ∆k1,∆k2 and ∆k3 separately.
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By the mean value theorem, there exists some ξk between σ̂−1/2
ε,kk and σ−1/2

ε,kk such that

∆k1 = φ(ξk|z − bᵀk ũ|)|z − bᵀk ũ|
∣∣∣∣∣ 1√

σ̂ε,kk
−

1
√
σε,kk

∣∣∣∣∣,
where φ(·) = Φ′(·). With τkk �

√
n/ log(nd) for k = 1, . . . , d, it follows that the event

E0 =

{
max
1≤k≤d

|σ̂kk − σkk| .
√

log(d)/n
}

satisfies P(Ec
0) . n−1. On E0, it holds σ̂−1

ε,kk ≥ (2σkk)−1, σ−1
ε,kk ≥ σ

−1
kk and therefore ξk ≥ (2σkk)−1/2

uniformly for all 1 ≤ k ≤ d as long as n & log d. This further implies max1≤k≤d maxz≥0 φ(ξk|z −
bᵀk ũ|)|z − bᵀk ũ| = OP(1). By (D.46),∣∣∣∣∣ 1√

σ̂ε,kk
−

1
√
σε,kk

∣∣∣∣∣ = OP(|σ̂kk − σkk| + ‖̂bk − bk‖2) = OP(wn,d) (D.48)

uniformly over k = 1, . . . , d, where wn,d =
√

log(d)/n + d−1/2. Putting the above calculations
together, we arrive at

1
d

d∑
k=1

∆k1 = OP(wn,d). (D.49)

Turning to ∆k2, again by the mean value theorem, there exists some ηk between b̂ᵀk û and bᵀk ũ
such that

∆k2 = φ
(
−z + ηk√
σ̂ε,kk

) b̂ᵀk û − bᵀk ũ√
σ̂ε,kk

.

In view of (D.48),

max
1≤k≤d

φ
(
−z + ηk√
σ̂ε,kk

) 1√
σ̂ε,kk

= OP(1).

Observe that B̂û = (
∑r
`=1 v̂`̂v

ᵀ
`

)Z and Bũ = (
∑r
`=1 v`v

ᵀ
`

)Z, where Z =
√

nX. By the Cauchy-
Schwarz inequality,

d∑
k=1

|̂bᵀk û − bᵀk ũ| ≤ d1/2‖B̂û − Bũ‖2

≤ d1/2
∥∥∥∥∥ r∑
`=1

(̂v`̂v
ᵀ
`
− v`v

ᵀ
`

)
∥∥∥∥∥

2
‖Z‖2 ≤ 2rd1/2 max

1≤`≤r
‖̂v` − v`‖2 ‖Z‖2. (D.50)

For ‖Z‖2, we calculate E‖Z‖22 = n‖µ‖22 +
∑d

k=1 σkk, indicating that ‖Z‖2 = OP(
√

n ‖µ‖2 + d1/2).
Combining this with (D.43), (D.50) and Theorem 3.3, we conclude that

1
d

d∑
k=1

∆k2 = OP{(d−1/2 √n ‖µ‖2 + 1)wn,d}. (D.51)

For ∆k3, following the same arguments as above, it suffices to consider

√
n

d

d∑
k=1

|bᵀk (BᵀB)−1Bᵀµ + bᵀk (BᵀB)−1Bᵀε|,
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which, by the Cauchy-Schwarz inequality, is bounded by√
n
d

∥∥∥∥∥ r∑
`=1

v`v
ᵀ
`

∥∥∥∥∥
2
‖µ‖2 + max

1≤k≤d
‖bk‖2‖u‖2 ≤

√
n
d
‖µ‖2 + max

1≤k≤d

√
σkk ‖u‖2,

where u =
√

n (BᵀB)−1Bᵀε ∈ Rr is a zero-mean random vector with covariance matrix Σu =

(BᵀB)−1BᵀΣεB(BᵀB)−1. Recall that BᵀB ∈ Rr×r has non-increasing eigenvalues λ1 ≥ · · · ≥ λr.
Under (ii) of Condition D.1, it holds E‖u‖22 = Tr(Σu) ≤ ‖Σε‖

∑r
`=1 λ

−1
` . rd−1 and thus ‖u‖2 =

OP(d−1/2). Putting the pieces together, we get

1
d

d∑
k=1

∆k3 = OP(d−1/2 √n ‖µ‖2 + d−1/2). (D.52)

Combining (D.47), (D.49), (D.51) and (D.52), we reach

1
d

d∑
k=1

Φ

(−z + b̂ᵀk û√
σ̂ε,kk

)
=

1
d

d∑
k=1

Φ

(−z +
√

n bᵀk f
√
σε,kk

)
+ OP(wn,d + d−1/2 √n ‖µ‖2).

Using the same argument, it can similarly derived that

1
d

d∑
k=1

Φ

(−z − b̂ᵀk û√
σ̂ε,kk

)
=

1
d

d∑
k=1

Φ

(−z −
√

n bᵀk f
√
σε,kk

)
+ OP(wn,d + d−1/2 √n ‖µ‖2).

Together, the last two displays lead to the stated result (D.12). �
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