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Abstract

We provide a survey of recent results on covariance estimation for heavy-
tailed distributions. By unifying ideas scattered in the literature, we propose
user-friendly methods that facilitate practical implementation. Specifically,
we introduce element-wise and spectrum-wise truncation operators, as well
as their M-estimator counterparts, to robustify the sample covariance matrix.
Different from the classical notion of robustness that is characterized by the
breakdown property, we focus on the tail robustness which is evidenced by
the connection between nonasymptotic deviation and confidence level. The
key insight is that estimators should adapt to the sample size, dimensional-
ity and noise level to achieve optimal tradeoff between bias and robustness.
Furthermore, to facilitate practical implementation, we propose data-driven
procedures that automatically calibrate the tuning parameters. We demon-
strate their applications to a series of structured models in high dimensions,
including the bandable and low-rank covariance matrices and sparse precision
matrices. Numerical studies lend strong support to the proposed methods.

Keywords: Covariance estimation, heavy-tailed data, M-estimation, nonasymptotics, tail
robustness, truncation.

1 Introduction

Covariance estimation serves as a building block for many important statistical learning
methods, including principal component analysis, discriminant analysis, clustering analysis
and regression analysis, among many others. Recently, estimating structured large covari-
ance matrices, such as bandable, sparse and low-rank matrices, has attracted ever-growing
attention in statistics and machine learning (Bickel and Levina, 2008a,b; Cai, Ren and Zhou,
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2016; Fan, Liao and Liu, 2016). It has broad applications, ranging from functional mag-
netic resonance imaging (fMRI), analysis of gene expression arrays to risk management
and portfolio allocation.

Theoretical properties of large covariance estimators discussed in the literature often
hinge heavily on the Gaussian or sub-Gaussian1 assumption (Vershynin, 2012). See, for
example, Theorem 1 of Bickel and Levina (2008a). Such an assumption is typically very
restrictive in practice. For example, a recent fMRI study by Eklund et al. (2016) reported
that most of the common software packages for fMRI analysis, such as SPM and FSL, can
result in inflated false-positive rates up to 70% under 5% nominal levels, and questioned a
number of fMRI studies among approximately 40,000 studies according to PubMed. Their
results suggested that

The principal cause of the invalid cluster inferences is spatial autocorrelation
functions that do not follow the assumed Gaussian shape.

Eklund et al. (2016) plotted the empirical versus theoretical spatial autocorrelation func-
tions for several datasets. The empirical autocorrelation functions have much heavier tails
compared to their theoretical counterparts under the commonly used assumption of a Gaus-
sian random field, which causes the failure of fMRI inferences. Similar phenomenon has
also been discovered in genomic studies (Liu et al., 2003; Purdom and Holmes, 2005) and
in quantitative finance (Cont, 2001). It is therefore imperative to develop robust inferential
procedures that are less sensitive to the distributional assumptions.

Heavy-tailed distribution is a viable model for data contaminated by outliers that are
typically encountered in applications. Due to heavy tailedness, the probability that some
observations are sampled far away from the “true” parameter of the population is non-
negligible. We refer to these outlying data points as stochastic outliers. A procedure that is
robust against such outliers, evidenced by its better finite-sample performance than a non-
robust method, is called a tail-robust procedure. In this paper, by unifying ideas scattered
in the literature, we provide a unified framework for constructing user-friendly tail-robust
covariance estimators that admit tight nonasymptotic deviation guarantees under weak mo-
ment assumptions. Specifically, we propose element-wise and spectrum-wise truncation
operators, as well as their M-estimator counterparts, with adaptively chosen robustification
parameters. Theoretically, we establish nonasymptotic deviation bounds and demonstrate
that the robustification parameters should adapt to the sample size, dimensionality and noise
level for optimal tradeoff between bias and robustness. To obtain estimators that are com-
putationally efficient and easily implementable in practice, we propose data-driven schemes
to calibrate the tuning parameters, making our proposal user-friendly. Finally, we discuss
applications to several structured models in high dimensions, including bandable matrices,
low-rank covariance matrices as well as sparse precision matrices. In the supplementary
material, we further consider robust covariance estimation and inference under factor mod-
els, which might be of independent interest.

Our definition of robustness is different from the conventional perspective under Hu-
ber’s ε-contamination model (Huber, 1964), where the focus has been on developing robust

1A random variable Z is said to have sub-Gaussian tails if there exists constants c1 and c2 such that P(|Z −
EZ| > t) ≤ c1 exp(−c2t2) for all t ≥ 0.
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procedures with a high breakdown point. The breakdown point (Hampel, 1971) of an esti-
mator is defined (informally) as the largest proportion of outliers in the data for which the
estimator remains stable. Since the seminal work of Tukey (1975), a number of depth-based
robust procedures have been developed; see, for example, the papers by Liu (1990), Zuo
and Serfling (2000), Mizera (2002) and Salibian-Barrera and Zamar (2002), among others.
Another line of work focuses on robust and resistant M-estimators, including the least me-
dian of squares and least trimmed squares (Rousseeuw, 1984), the S-estimator (Rousseeuw
and Yohai, 1984) and the MM-estimator (Yohai, 1987). We refer to Portnoy and He (2000)
for a literature review on classical robust statistics, and to Chen, Gao and Ren (2018) for
recent developments on nonasymptotic analysis under contamination models.

The rest of the paper is organized as follows. We start with a motivating example in
Section 2, which reveals the downsides of the sample covariance matrix. In Section 3, we
introduce two types of generic robust covariance estimators and establish their deviation
bounds under different norms of interest. The finite-sample performance of the proposed
estimators, both element-wise and spectrum-wise, depends on a proper tuning of the robus-
tification parameter that should adapt to the noise level for bias-robustness tradeoff. We also
discuss the median-of-means estimator, which is virtually tuning-free at the cost of slightly
stronger assumptions. For practical implementation, in Section 4 we propose a data-driven
scheme to choose the key tuning parameters. Section 5 presents various applications to
estimating structured covariance and precision matrices. Numerical studies are provided in
Section 6. We conclude this paper with a discussion in Section 7.

1.1 Overview of the Previous Work

In the past several decades, there has been a surge of work on robust covariance estima-
tion in the absence of normality. Examples include the Minimum Covariance Determinant
(MCD) estimator, the Minimum Volume Ellipsoid (MVE) estimator, Maronna’s (Maronna,
1976) and Tyler’s (Tyler, 1987) M-estimators of multivariate scatter matrices. We refer to
Hubert, Rousseeuw and Van Aelst (2008) for a comprehensive review. Asymptotic proper-
ties of these methods have been established for the family of elliptically symmetric distribu-
tions; see, for example, Davies (1992), Butler, Davies and Jhun (1993) and Zhang, Cheng
and Singer (2016), among others. However, the aforementioned estimators either rely on
parametric assumptions, or impose a shape constraint on the sampling distribution. Under a
general setting where neither of these assumptions are made, robust covariance estimation
remains a challenging problem.

The work of Catoni (2012) triggered a growing interest in developing tail-robust es-
timators, which are characterized by tight nonasymptotic deviation analysis, rather than
mean squared errors. The current state-of-the-art methods for covariance estimation with
heavy-tailed data include those of Catoni (2016), Minsker (2018), Minsker and Wei (2018),
Avella-Medina et al. (2018), and Mendelson and Zhivotovskiy (2018). From a spectrum-
wise perspective, Catoni (2016) constructed a robust estimator of the Gram and covariance
matrices of a random vector X ∈ Rd via estimating the quadratic forms E〈u, X〉2 uniformly
over the unit sphere in Rd, and proved error bounds under the operator norm. More recently,
Mendelson and Zhivotovskiy (2018) proposed a different robust covariance estimator that
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admits tight deviation bounds under the finite kurtosis condition. Both constructions, how-
ever, involve brute-force search over every direction in a d-dimensional ε-net, and thus
are computationally intractable. From an element-wise perspective, Avella-Medina et al.
(2018) combined robust estimates of the first and second moments to obtain variance es-
timators. In practice, three potential drawbacks of this approach are: (i) the accumulated
error from estimating the first and second moments may cause high variability; (ii) the di-
agonal variance estimators are not necessarily positive and therefore additional adjustments
are required; and (iii) using the cross-validation to calibrate a total number of O(d2) tuning
parameters is computationally expensive.

Building on the ideas of Minsker (2018) and Avella-Medina et al. (2018), we propose
user-friendly tail-robust covariance estimators that enjoy desirable finite-sample deviation
bounds under weak moment conditions. The constructed estimators only involve simple
truncation techniques and are computationally friendly. Through a novel data-driven tuning
scheme, we are able to efficiently compute these robust estimators for large-scale problems
in practice. These two points distinguish our work from the literature on the topic. The pro-
posed robust procedures serve as building blocks for estimating large structured covariance
and precision matrices, and we illustrate their broad applicability in a series of problems.

1.2 Notation

We adopt the following notation throughout the paper. For any 0 ≤ r, s ≤ ∞ and a d × d
matrix A = (Ak`)1≤k,`≤d, we define the max norm ‖A‖max = max1≤k,`≤d |Ak`|, the Frobenius
norm ‖A‖F = (

∑
1≤k,`≤d A2

k`)
1/2 and the operator norm

‖A‖r,s = sup
u=(u1,...,ud)ᵀ:‖u‖r=1

‖Au‖s,

where ‖u‖rr =
∑d

k=1 |uk|
r for r ∈ (0,∞), ‖u‖0 =

∑d
k=1 I(|uk| , 0) and ‖u‖∞ = max1≤k≤d |uk|.

In particular, it holds ‖A‖1,1 = max1≤`≤d
∑d

k=1 |Ak`| and ‖A‖∞,∞ = max1≤k≤d
∑d
`=1 |Ak`|.

Moreover, we write ‖A‖2 := ‖A‖2,2 for the spectral norm and use r(A) = tr(A)/‖A‖2 to
denote the effective rank of a nonnegative definite matrix A, where tr(A) =

∑d
k=1 Akk is the

trace of A. When A is symmetric, it is well known that ‖A‖2 = max1≤k≤d |λk(A)| where
λ1(A) ≥ λ2(A) . . . ≥ λd(A) are the eigenvalues of A. For any matrix A ∈ Rd×d and an
index set J ⊆ {1, . . . , d}2, we use Jc to denote the complement of J, and AJ to denote the
submatrix of A with entries indexed by J. For a real-valued random variable X, let kurt(X)
be the kurtosis of X, defined as kurt(X) = E(X − µ)4/σ4, where µ = EX and σ2 = var(X).

2 Motivating Example: A Challenge of Heavy-Tailedness

Suppose that we observe a sample of independent and identically distributed (i.i.d.) copies
X1, . . . , Xn of a random vector X = (X1, . . . , Xd)ᵀ ∈ Rd with mean µ and covariance matrix
Σ = (σk`)1≤k,`≤d. To assess the difficulty of mean and covariance estimation for heavy-tailed
distributions, we first provide a lower bound for the deviation of the empirical mean under
the `∞-norm in Rd.

4



Proposition 2.1. For any σ > 0 and 0 < δ < (2e)−1, there exists a distribution in Rd with
mean µ and covariance matrix σ2Id such that the empirical mean X̄ = (1/n)

∑n
i=1 Xi of i.i.d.

observations X1, . . . , Xn from this distribution satisfies, with probability at least δ,

‖X̄ − µ‖∞ ≥ σ
√

d
nδ

(
1 −

2eδ
n

)(n−1)/2
. (2.1)

The above proposition is a multivariate extension of Proposition 6.2 of Catoni (2012).
It provides a lower bound under the `∞-norm for estimating a mean vector via the empirical
mean. On the other hand, combining the union bound with Chebyshev’s inequality, we
obtain that with probability at least 1 − δ,

‖X̄ − µ‖∞ ≤ σ
√

d
nδ
.

Together, this upper bound and inequality (2.1) show that the worst case deviations of the
empirical means grow polynomially in 1/δ under the `∞-norm in the presence of heavy-
tailed distributions. As we will see later, a more robust estimator can achieve an exponential-
type deviation bound under weak moment conditions.

To demonstrate the practical implications of Proposition 2.1, we perform a toy nu-
merical study on covariance matrix estimation. Let X1, . . . , Xn be i.i.d. copies of X =

(X1, . . . , Xd) ∈ Rd, where Xk’s are independent and have centered Gamma(3, 1) distribution
so that µ = 0 and Σ = 3Id. We compare the performance of three methods: the sam-
ple covariance matrix, the element-wise truncated covariance matrix and the spectrum-wise
truncated covariance matrix. The latter two are tail-robust covariance estimators that will be
introduced in Sections 3.1 and 3.2 respectively. Take n = 200 and let d increase from 50 to
500 with a step size of 50. We report the estimation errors under the max norm based on 50
simulations. Figure 1 displays the average (line) and the spread (dots) of estimation errors
for each method as the dimension increases. We see that the sample covariance estimator
has not only the largest average error but also the highest variability in all the settings. This
example demonstrates that the sample covariance matrix suffers from poor finite-sample
performance when data are heavy-tailed.

3 Tail-Robust Covariance Estimation

3.1 Element-Wise Truncated Estimator

We consider the same setting as in the previous section. For mean estimation, the subop-
timality of deviations of X̄ = (X̄1, . . . , X̄d)ᵀ under `∞-norm is due to the fact that the tail
probability of |X̄k − µk| decays only polynomially in the deviation. A simple yet natural
idea for improvement is to truncate the data to eliminate outliers introduced by heavy-tailed
noises, so that each entry of the resulting estimator exhibits sub-Gaussian tails. To execute
this idea, we introduce the following truncation operator, which is closely related to the
Huber loss.

Definition 3.1 (Truncation operator). Let ψτ(·) be a truncation operator given by

ψτ(u) =
(
|u| ∧ τ

)
sign(u), u ∈ R, (3.1)
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Figure 1: Plots of estimation error under max norm versus dimension.

where the truncation parameter τ > 0 is also referred to as the robustification parameter
that trades off bias against robustness.

As an illustration, we assume that µ = 0 whence Σ = E(XXᵀ). We apply the truncation
operator above to each entry of XiX

ᵀ
i , and then take the average to obtain

σ̂T0,k` =
1
n

n∑
i=1

ψτk`(XikXi`), 1 ≤ k, ` ≤ d,

where τk` > 0 are robustification parameters. When the mean vector µ is unspecified, a
straightforward approach is to first estimate the mean vector using existing robust methods
(Minsker, 2015; Lugosi and Mendelson, 2019), and then to employ σ̂T0,k` as robust estimates
of the second moments. Estimating the first and second moments separately will unavoid-
ably introduce additional tuning parameters, thus increasing both statistical variability and
computational complexity. In what follows, we propose to use the pairwise difference ap-
proach to directly estimate variances and covariances, which is free of mean estimation.
To the best of our knowledge, the difference-based techniques can be traced back to Rice
(1984) and Hall, Kay and Titterington (1990) in the context of bandwidth selection and
variance estimation for nonparametric regression.

Let N := n(n − 1)/2 and define the paired data

{Y1,Y2, . . . ,YN}
(3.2)

= {X1 − X2, X1 − X3, . . . , Xn−1 − Xn},

which are identically distributed from a random vector Y with mean 0 and covariance matrix
cov(Y) = 2Σ. It is easy to check that the sample covariance matrix, Σ̂sam = (1/n)

∑n
i=1(Xi −

X̄)(Xi − X̄)ᵀ with X̄ = (1/n)
∑n

i=1 Xi, can be expressed as a U-statistic

Σ̂sam =
1
N

N∑
i=1

YiY
ᵀ
i /2.
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Following the argument from the last section, we apply the truncation operator ψτ to
YiY

ᵀ
i /2 entry-wise, and then take the average to obtain

σ̂T1,k` =
1
N

N∑
i=1

ψτk`(YikYi`/2), 1 ≤ k, ` ≤ d.

Concatenating these estimators, we define the element-wise truncated covariance matrix
estimator via

Σ̂T1 = Σ̂T1 (Γ) =
(
σ̂T1,k`

)
1≤k,`≤d, (3.3)

where Γ = (τk`)1≤k,`≤d is a symmetric matrix of parameters. Σ̂T1 can be viewed as a trun-
cated version of the sample covariance matrix Σ̂sam. We assume that n ≥ 2, d ≥ 1 and
define m = bn/2c, the largest integer not exceeding n/2. Moreover, let V = (vk`)1≤k,`≤d be a
symmetric d × d matrix such that

v2
k` = E(Y1kY1`/2)2 = E

{
(X1k − X2k)(X1` − X2`)

}2/4.

Theorem 3.1. For any 0 < δ < 1, the estimator Σ̂T1 = Σ̂T1 (Γ) defined in (3.3) with

Γ =

√
m/

(
2 log d + log δ−1)V (3.4)

satisfies

P
(∥∥∥Σ̂T1 − Σ∥∥∥max ≥ 2‖V‖max

√
2 log d + log δ−1

m

)
≤ 2δ. (3.5)

Theorem 3.1 indicates that, with properly calibrated parameter matrix Γ, the resulting
covariance matrix estimator achieves element-wise tail robustness against heavy-tailed dis-
tributions: provided the fourth moments are bounded, each entry of Σ̂T1 concentrates tightly
around its mean so that the maximum error scales as

√
log(d)/n +

√
log(δ−1)/n. Element-

wise, we are able to accurately estimate Σ at high confidence levels under the constraint that
log(d)/n is small. Implicitly, the dimension d = d(n) is regarded as a function of n, and we
shall use array asymptotics “n, d → ∞” to characterize large sample behaviors. The finite
sample performance, on the other hand, is characterized via nonasymptotic probabilistic
bounds with explicit dependence on n and d.

Remark 1. It is worth mentioning that the estimator given in (3.3) and (3.4) is not a genuine
sub-Gaussian estimator, in a sense that it depends on the confidence level 1 − δ at which
one aims to control the error. More precisely, following the terminology used by Devroye
et al. (2016), it is called a δ-dependent sub-Gaussian estimator. Estimators of a similar type
include those of Catoni (2012), Minsker (2015), Brownlees, Joly and Lugosi (2015), Hsu
and Sabato (2016), Minsker (2018) and Avella-Medina et al. (2018), among others. For
univariate mean estimation, Devroye et al. (2016) proposed multiple-δ mean estimators that
satisfy exponential-type concentration bounds uniformly over δ ∈ [δmin, 1). The idea is to
combine a sequence of δ-dependent estimators in a way very similar to Lepski’s method
(Lepski, 1990).
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Remark 2. Since the element-wise truncated estimator is obtained by treating each covari-
ance σk` separately as a univariate parameter, the problem is equivalent to estimation of
a large vector given by the concatenation of the columns of Σ. This type of result is par-
ticularly useful for proving upper bounds for sparse covariance and precision estimators in
high dimensions; see Section 5. Integrated with `∞-type perturbation bounds, it can also be
applied to principle component analysis and factor analysis for heavy-tailed data (Fan et al.,
2019). However, when dealing with large covariance matrices with bandable or low-rank
structure, controlling the estimation error under spectral norm is arguably more relevant.
A natural idea is then to truncate the spectrum of the sample covariance matrix instead of
its entries, which leads to the spectrum-wise truncated estimator defined in the following
section.

3.2 Spectrum-Wise Truncated Estimator

In this section, we propose and study a covariance estimator that is tail-robust in the spectral
norm. To this end, we directly apply the truncation operator to matrices in their spectrum
domain. We need the following standard definition of a matrix functional.

Definition 3.2 (Matrix functional). Given a real-valued function f defined on R and a sym-
metric A ∈ RK×K with eigenvalue decomposition A = UΛUᵀ such thatΛ = diag(λ1, . . . , λK),
f (A) is defined as f (A) = U f (Λ)Uᵀ, where f (Λ) = diag( f (λ1), . . . , f (λK)).

Following the same rationale as in the previous section, we propose a spectrum-wise
truncated covariance estimator based on the pairwise difference approach:

Σ̂T2 = Σ̂T2 (τ) =
1
N

N∑
i=1

ψτ
(
YiY

ᵀ
i /2

)
, (3.6)

where Yi are given in (3.3). Note that YiY
ᵀ
i /2 is a rank-one matrix with eigenvalue ‖Yi‖

2
2/2

and the corresponding eigenvector Yi/‖Yi‖2. By Definition 3.2, Σ̂T2 can be rewritten as

1
N

N∑
i=1

ψτ

(1
2
‖Yi‖

2
2

)YiY
ᵀ
i

‖Yi‖
2
2

=
1(
n
2

) ∑
1≤i< j≤n

ψτ

(1
2
‖Xi − X j‖

2
2

)
×

(Xi − X j)(Xi − X j)ᵀ

‖Xi − X j‖
2
2

.

This alternative expression renders the computation almost effortless. The following the-
orem provides an exponential-type concentration inequality for Σ̂T2 under operator norm,
which is a useful complement to Minsker (2018). Similarly to Theorem 3.1, our next result
shows that Σ̂T2 achieves exponential-type concentration in the operator norm for heavy-
tailed data with finite operator-wise fourth moment, meaning that

v2 =
1
4

∥∥∥E{(X1 − X2)(X1 − X2)ᵀ
}2∥∥∥

2 (3.7)

is finite.
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Theorem 3.2. For any 0 < δ < 1, the estimator Σ̂T2 = Σ̂T2 (τ) with

τ = v
√

m
log(2d) + log δ−1 (3.8)

satisfies, with probability at least 1 − δ,

∥∥∥Σ̂T2 − Σ∥∥∥2 ≤ 2v

√
log(2d) + log δ−1

m
. (3.9)

To better recognize this result, note that v2 can be written as

1
2

∥∥∥E{(X − µ)(X − µ)ᵀ
}2

+ tr(Σ)Σ + 2Σ2
∥∥∥

2,

which is well-defined if the fourth moments E(X4
k ) are finite. Let

K = sup
u∈Rd

kurt
(
uᵀX

)
be the maximum kurtosis of one-dimensional projections of X. Then

v2 ≤ ‖Σ‖2
{
(K + 1)tr(Σ)/2 + ‖Σ‖2

}
.

The following result is a direct consequence of Theorem 3.2: Σ̂T2 admits exponential-type
concentration for data with finite kurtoses.

Corollary 3.1. Assume that K = supu∈Rd kurt(uᵀX) is finite. Then, for any 0 < δ < 1, the
estimator Σ̂T2 = Σ̂T2 (τ) defined in Theorem 3.2 satisfies

∥∥∥Σ̂T2 − Σ∥∥∥2 . K1/2‖Σ‖2

√
r(Σ)(log d + log δ−1)

n
(3.10)

with probability at least 1−δ. Here and below, “.” stands for “≤” up to an absolute constant.

Remark 3. An estimator proposed by Mendelson and Zhivotovskiy (2018) achieves a
sharper deviation bound, namely, with ‖Σ‖2

√
r(Σ)(log d + log δ−1) in (3.10) improved to

‖Σ‖2
√

r(Σ) log r(Σ) + ‖Σ‖2
√

log δ−1; in particular, the second term in the deviation bound is
controlled by the spectral norm ‖Σ‖2 instead of the possibly much larger tr(Σ). Estimators
admitting such recovery guarantees are often called “sub-Gaussian” as they achieve perfor-
mance similar to the sample covariance obtained from data with multivariate normal distri-
butions. Unfortunately, the aforementioned estimator is computationally intractable. The
question of computational tractability was subsequently resolved by Hopkins (2018) and
Cherapanamjeri, Flammarion and Bartlett (2019). The former showed that a polynomial-
time algorithm achieves statistically optimal rate under the `2-norm, and the latter proposed
an estimator that has a significantly faster runtime; in particular, these results apply to co-
variance estimation with theoretical guarantees under Frobenius norm. Yet it remains an
open problem to design a polynomial-time algorithm capable of efficiently computing the
estimator proposed by Mendelson and Zhivotovskiy (2018) that achieves near-optimal de-
viation under the spectral norm.
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3.3 An M-Estimation Viewpoint

In this section, we discuss alternative tail-robust covariance estimators from an M-estimation
perspective, and study both the element-wise and spectrum-wise truncated estimators. The
connection with truncated covariance estimators is discussed at the end of this section. To
proceed, we revisit the definition of Huber loss.

Definition 3.3 (Huber loss). The Huber loss `τ(·) (Huber, 1964) is defined as

`τ(u) =

u2/2 if |u| ≤ τ,

τ|u| − τ2/2 if |u| > τ,
(3.11)

where τ > 0 is a robustification parameter similar to that in Definition 3.1.

Compared with the squared error loss, large values of u are down-weighted in the Huber
loss, yielding robustness. Generally speaking, minimizing Huber’s loss produces a biased
estimator of the mean, and parameter τ can be chosen to control the bias. In other words,
τ quantifies the tradeoff between bias and robustness. As observed by Sun, Zhou and Fan
(2018), in order to achieve an optimal tradeoff, τ should adapt to the sample size, dimension
and the noise level.

Starting with the element-wise method, we define the entry-wise estimators

σ̂H1,k` = argmin
θ∈R

N∑
i=1

`τk`(YikYi`/2 − θ), 1 ≤ k, ` ≤ d, (3.12)

where τk` are robustification parameters satisfying τk` = τ`k. When k = `, even though
the minimization is over R, it turns out the solution σ̂H1,kk is still positive almost surely and
therefore provides a reasonable estimator of σH1,kk. To see this, for each 1 ≤ k ≤ d, define
θ0k = min1≤i≤N Y2

ik/2 and note that for any τ > 0 and θ ≤ θ0k,

N∑
i=1

`τ
(
Y2

ik/2 − θ
)
≥

N∑
i=1

`τ
(
Y2

ik/2 − θ0k
)
.

It implies that σ̂H1,kk ≥ θ0k, which is strictly positive as long as there are no tied observations.
Again, concatenating these marginal estimators, we obtain a Huber-type M-estimator

Σ̂H1 = Σ̂H1 (Γ) =
(
σ̂H1,k`

)
1≤k,`≤d, (3.13)

where Γ = (τk`)1≤k,`≤d. The following main result of this section indicates that Σ̂H1 achieves
tight concentration under the max norm for data with finite fourth moments.

Theorem 3.3. Let V = (vk`)1≤k,`≤d be a symmetric matrix with entries

v2
k` = var

(
(X1k − X2k)(X1` − X2`)/2

)
. (3.14)

For any 0 < δ < 1, the covariance estimator Σ̂H1 given in (3.13) with

Γ =

√
m

2 log d + log δ−1 V (3.15)
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satisfies

P
(∥∥∥Σ̂H1 − Σ∥∥∥max ≥ 4‖V‖max

√
2 log d + log δ−1

m

)
≤ 2δ (3.16)

as long as m ≥ 8 log(d2δ−1).

The M-estimator counterpart of the spectrum-truncated covariance estimator was first
proposed by Minsker (2018) using a different robust loss function, and extended by Minsker
and Wei (2018) to more general framework of U-statistics. In line with the previous
element-wise M-estimator, we restrict our attention to the Huber loss and consider

Σ̂H2 ∈ argmin
M∈Rd×d :M=Mᵀ

tr
{

1
N

N∑
i=1

`τ
(
YiY

ᵀ
i /2 −M

)}
, (3.17)

which is a natural robust variant of the sample covariance matrix

Σ̂sam = argmin
M∈Rd×d:M=Mᵀ

tr
{

1
N

N∑
i=1

(
YiY

ᵀ
i /2 −M

)2
}
.

Define the d × d matrix S0 = E{(X1 − X2)(X1 − X2)ᵀ/2 − Σ}2 that satisfies

S0 =
E{(X − µ)(X − µ)ᵀ}2 + tr(Σ)Σ

2
.

The following result is modified from Corollary 4.1 of Minsker and Wei (2018).

Theorem 3.4. Assume that there exists some K > 0 such that supu∈Rd kurt(uᵀX) ≤ K. Then
for any 0 < δ < 1 and v ≥ ‖S0‖

1/2
2 , the M-estimator Σ̂H2 with τ = v

√
m/(2 log d + 2 log δ−1)

satisfies

∥∥∥Σ̂H2 − Σ∥∥∥2 ≤ C1v

√
log d + log δ−1

m
(3.18)

with probability at least 1 − 5δ as long as n ≥ C2K · r(Σ)(log d + log δ−1), where C1,C2 > 0
are absolute constants.

To solve the convex optimization problem (3.17), Minsker and Wei (2018) proposed
the following gradient descent algorithm: starting with an initial estimator Σ̂(0), at iteration
t = 1, 2, . . . , compute

Σ̂(t) = Σ̂(t−1) −
1
N

N∑
i=1

ψτ
(
YiY

ᵀ
i /2 − Σ̂

(t−1)),
where ψτ is given in (3.1). From this point of view, the truncated estimator Σ̂T2 given in
(3.6) can be viewed as the first step of the gradient descent iteration for solving optimization
problem (3.17) initiated at Σ̂(0) = 0. This procedure enjoys a nice contraction property, as
demonstrated by Lemma 3.2 of Minsker and Wei (2018). However, since the difference
matrix YiY

ᵀ
i /2− Σ̂

(t−1) for each t is no longer rank-one, we need to perform a singular value
decomposition to compute the matrix ψτ(YiY

ᵀ
i /2 − Σ̂

(t−1)) for i = 1, . . . ,N.
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We end this section with a discussion of the similarities and differences between M-
estimators and estimators defined via truncation. Both types of estimators achieve tail ro-
bustness through a bias-robustness tradeoff, either element-wise or spectrum-wise. How-
ever (informally speaking), M-estimators truncate symmetrically around the true expecta-
tion as shown in (3.12) and (3.17), while the truncation-based estimators truncate around
zero as in (3.3) and (3.6). Due to smaller bias, M-estimators are expected to outperform
the simple truncation estimators. However, since the optimal choice of the robustification
parameter is often much larger than the population moments in magnitude, either element-
wise or spectrum-wise, the difference between truncation estimators and M-estimators be-
comes insignificant when the sample size n is large. Therefore, we advocate using the
simple truncated estimator primarily due to its simplicity and computational efficiency.

3.4 Median-of-Means Estimator

Truncation-based approaches described in the previous sections require knowledge of ro-
bustification parameters τk`. Adaptation and tuning of these parameters will be discussed
in Section 4 below. Here, we suggest another method that does not need any tuning but
requires stronger assumptions, namely, existence of moments of order six. This method is
based on the median-of-means (MOM) technique (Nemirovsky and Yudin, 1983; Devroye
et al., 2016; Minsker and Strawn, 2017). To this end, assume that the index set {1, . . . , n}
is partitioned into k disjoint groups G1, . . . ,Gk (partitioning scheme is assumed to be inde-
pendent of X1, . . . , Xn) such that the cardinalities |G j| satisfy ||G j| −

n
k | ≤ 1 for j = 1, . . . , k.

For each j = 1, . . . , k, let X̄G j = (1/|G j|)
∑

i∈G j Xi and

Σ̂( j) =
1
|G j|

∑
i∈G j

(Xi − X̄G j)(Xi − X̄G j)
ᵀ

be the sample covariance evaluated over the data in group j. Then, for all 1 ≤ `,m ≤ d, the
MOM estimator of σ`m is defined via

σ̂MOM
`m = median

{
σ̂(1)
`m, . . . , σ̂

(k)
`m

}
,

where σ̂( j)
`m is the entry in the `th row and mth column of Σ̂( j). This leads to

Σ̂MOM =
(
σ̂MOM
`m

)
1≤`,m≤d.

Let ∆2
`m = Var((X` − EX`)(Xm − EXm)) for 1 ≤ `,m ≤ d. The following result provides a

deviation bound for the MOM estimator Σ̂MOM under the max norm.

Theorem 3.5. Assume that min`,m ∆2
`m ≥ c` > 0 and max1≤k≤d E|Xk − EXk|

6 ≤ cu < ∞.
Then, there exists C0 > 0 depending only on (c`, cu) such that

P
(∥∥∥Σ̂MOM − Σ

∥∥∥
max ≥ 3 max

`,m
∆`m

{√
log(d + 1) + log δ−1

n
+ C0

k
n

})
≤ 2δ

for all δ satisfying
√
{log(d + 1) + log δ−1}/k + C0

√
k/n ≤ 0.33.

Remark 4.
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1. The only user-defined parameter in the definition of Σ̂MOM is the number of sub-
groups k. The bound above shows that, provided k �

√
n (say, one could set

k =
√

n/log n), the term C0k/n in (3.19) is of smaller order, and we obtain an estima-
tor that admits tight deviation bounds for a wide range of δ. In this sense, estimator
Σ̂MOM is essentially a multiple-δ estimator (Devroye et al., 2016); see Remark 1.

2. Application of the MOM construction to large covariance estimation problems has
been explored by Avella-Medina et al. (2018). However, the results obtained therein
are insufficient to conclude that MOM estimators are truly “tuning-free”. Under a
bounded fourth moment assumption, Avella-Medina et al. (2018) derived a deviation
bound (under max norm) for the element-wise median-of-means estimator with the
number of partitions depending on a prespecified confidence level parameter.

4 Automatic Tuning of Robustification Parameters

For all the proposed tail-robust estimators besides the median-of-means, the robustifica-
tion parameter needs to adapt to the sample size, dimensionality and noise level in order to
achieve optimal tradeoff between bias and robustness in finite samples. An intuitive idea
is to use cross-validation or the Lepski’s method (Lepski and Spokoiny, 1997; Minsker,
2018). However both approaches are computationally expensive. In this section, we pro-
pose tuning-free approaches for constructing both truncated and M-estimators that have low
computational costs. Our nonasymptotic analysis provides useful guidance on the choice
of key tuning parameters.

4.1 Adaptive Truncated Estimator

We first introduce a data-driven procedure that automatically tunes the robustification pa-
rameters in the element-wise truncated covariance estimator. This procedure is motivated
by the theoretical properties established in Theorem 3.1. To avoid notational clutter, we fix
1 ≤ k ≤ ` ≤ d and define {Z1, . . . ,ZN} = {Y1kY1`/2, . . . ,YNkYN`/2} such that σk` = EZ1.
Then σ̂T1,k` can be written as (1/N)

∑N
i=1 ψτk`(Zi). In view of (3.4), an “ideal” choice of τk`

is

τk` = vk`

√
m

2 log d + t
with v2

k` = EZ2
1 , (4.1)

where t = log δ−1 ≥ 1 is prespecified to control the confidence level and will be discussed
later. A naive estimator of v2

k` is the empirical second moment (1/N)
∑N

i=1 Z2
i , which tends

to overestimate the true value when data have high kurtoses. Intuitively, a well-chosen τk`

makes (1/N)
∑N

i=1 ψτk`(Zi) a good estimator of EZ1, and meanwhile, we expect the empirical
truncated second moment (1/N)

∑N
i=1 ψ

2
τk`

(Zi) = (1/N)
∑N

i=1(Z2
i ∧ τ

2
k`) to be a reasonable

estimate of EZ2
1 . Plugging this empirical truncated second moment into (4.1) yields

1
N

N∑
i=1

(Z2
i ∧ τ

2)

τ2 =
2 log d + t

m
, τ > 0. (4.2)
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We then solve the above equation to obtain τ̂k`, a data-driven choice of τk`. By Proposi-
tion 3 in Wang et al. (2018), equation (4.2) has a unique solution as long as 2 log d + t <
(m/N)

∑N
i=1 I{Zi , 0}. We characterize the theoretical properties of this tuning method in a

companion paper (Chen and Zhou, 2019).
Regarding the choice of t = log δ−1: on the one hand, because it controls the confidence

level according to (3.5), we shall let t = tn be sufficiently large so that the estimator concen-
trates around the true value with high probability. On the other hand, t also appears in the
deviation bound that corresponds to the width of the confidence interval, so it should not
grow too fast as a function of n. In practice, we recommend using t = log n (or equivalently,
δ = n−1), a slowly varying function of n.

To implement the spectrum-wise truncated covariance estimator in practice, note that
there is only one tuning parameter whose theoretically optimal scale is

1
2

∥∥∥E{(X1 − X2)(X1 − X2)ᵀ
}2∥∥∥1/2

2

√
m

log(2d) + t
.

Motivated by the data-driven tuning scheme for the element-wise estimator, we choose τ by
solving the equation ∥∥∥∥∥∥ 1

τ2N

N∑
i=1

(‖Yi‖
2
2

2
∧ τ

)2 YiY
ᵀ
i

‖Yi‖
2
2

∥∥∥∥∥∥
2

=
log(2d) + t

m
,

where as before we take t = log n.

4.2 Adaptive Huber-Type M-Estimator

To construct a data-driven approach that automatically tunes the adaptive Huber estimator,
we follow the same rationale from the previous subsection. Since the optimal τk` now de-
pends on var(Z1) instead of the second moment EZ2

1 , it is therefore conservative to directly
apply the above data-driven method in this case. Instead, we propose to estimate τk` and
σk` simultaneously by solving the following system of equations

f1(θ, τ) =
1
N

N∑
i=1

{(Zi − θ)2 ∧ τ2}

τ2 −
2 log d + t

n
= 0, (4.3a)

f2(θ, τ) =

N∑
i=1

ψτ(Zi − θ) = 0, (4.3b)

for θ ∈ R and τ > 0. Via a similar argument, it can be shown that the equation f1(θ, ·) = 0
has a unique solution as long as 2 log d + t < (n/N)

∑N
i=1 I{Zi , θ}; for any τ > 0,

the equation f2(·, τ) = 0 also has a unique solution. Starting with an initial estimate
θ(0) = (1/N)

∑N
i=1 Zi, which is the sample variance estimator of σk`, we iteratively solve

f1(θ(s−1), τ(s)) = 0 and f2(θ(s), τ(s)) = 0 for s = 1, 2, . . . until convergence. The resultant
estimator, denoted by σ̂H3,k` with slight abuse of notation, is then referred to as the adap-
tive Huber estimator of σk`. We then obtain the data-adaptive Huber covariance matrix
estimator as Σ̂H3 = (σ̂H3,k`)1≤k,`≤d. Algorithm 1 presents the summary of this data-driven
approach.
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Algorithm 1 Data-adaptive huber covariance matrix estimation
Input Data vectors Xi ∈ R

d (i = 1, . . . , n), tolerance level ε and maximum iteration S max.
Output Data-adaptive Huber covariance matrix estimator Σ̂H3 = (σ̂H3,k`)1≤k,`≤d.

1: Compute pairwise differences Y1 = X1 − X2,Y2 = X1 − X3, . . . ,YN = Xn−1 − Xn,
where N = n(n − 1)/2.

2: for 1 ≤ k ≤ ` ≤ d do

3: θ(0) = (2N)−1 ∑N
i=1 YikYi`.

4: for s = 1, . . . , S max do

5: τ(s) ← solution of f1(θ(s−1), ·) = 0.

6: θ(s) ← solution of f2(·, τ(s)) = 0.

7: if |θ(s) − θ(s−1)| < ε break

8: stop σ̂H3,`k = σ̂H3,k` = θ(S max).

9: stop

10: return Σ̂H3 = (σ̂H3,k`)1≤k,`≤d.

5 Applications to Structured Matrix Estimation

The robustness properties of the element-wise and spectrum-wise truncation estimators are
demonstrated in Theorems 3.1 and 3.2. In particular, the exponential-type concentration
bounds are essential for establishing reasonable estimators for high-dimensional structured
covariance and precision matrices. In this section, we apply the proposed generic robust
methods to the estimation of bandable and low-rank covariance matrices as well as sparse
precision matrices.

5.1 Bandable Covariance Matrix Estimation

Motivated by applications to climate studies and spectroscopy in which the index set of
variables X = (X1, . . . , Xd)ᵀ admits a natural order, one can expect that a large “distance”
|k − `| implies near-independence. We characterize this feature by the following class of
bandable covariance matrices considered by Bickel and Levina (2008a) and by Cai, Zhang
and Zhou (2010):

Fα(M0,M)

=

{
Σ = (σk`)1≤k,`≤d ∈ R

d×d : λ1(Σ) ≤ M0, max
1≤`≤d

∑
k:|k−`|>m

|σk`| ≤
M
mα

for all m
}
.

Here M0,M are regarded as universal constants and the parameter α specifies the decay rate
of σk` to zero as ` → ∞ for each row.
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When X follows sub-Gaussian distribution, Cai, Zhang and Zhou (2010) proposed a
minimax-optimal estimator over Fα(M0,M) under the spectral norm. Specifically, they
proposed a tapering estimator Σ̂tap

m = (σ̂k` ·ω|k−|), where the positive integer m ≤ d specifies
the bandwidth, ωq = 1, 2 − 2q/m, 0, when q ≤ m/2, m/2 < q ≤ m, q > m, respectively.
Σ̂sam = (σ̂k`)1≤k,`≤d denotes the sample covariance. With the optimal choice of bandwidth
m � min{n1/(2α+1), d}, Cai, Zhang and Zhou (2010) showed that Σ̂tap

m achieves the minimax
rate of convergence {

√
log(d)/n + n−α/(2α+1)} ∧

√
d/n under the spectral norm.

To obtain a root-n consistent covariance estimator, we expect the coordinates of X to
have at least finite fourth moments. Under this condition, it is unclear whether the optimal
rate can be achieved over Fα(M0,M) without imposing additional distributional assump-
tions, such as the elliptical symmetry (Mitra and Zhang, 2014; Chen, Gao and Ren, 2018).
Estimators that naively use the sample covariance will inherit its sensitivity to outliers. Re-
call the definition of Σ̂T2 in (3.6); a simple idea is to replace the sample covariance by a
spectrum-wise truncated estimator Σ̂T2 in the first step, to which the tapering procedure can
be applied. However, such an estimator is not optimal: indeed, the analysis of a tapering
estimator requires each small principal submatrix of the initial estimator to be highly con-
centrated around the population object. Suppose that we truncate the `2-norm of the entire
vector Yi at a level τ scaling with tr(Σ). For each subset J ⊆ {1, . . . , d}, let YiJ be the
subvector of Yi indexed by J. Then the corresponding principal submatrix

1
N

N∑
i=1

ψτ

(1
2
‖Yi‖

2
2

)YiJYᵀiJ
‖Yi‖

2
2

is not an ideal robust estimator of ΣJJ because the “optimal” τ in this case should scale with
tr(ΣJJ) rather than tr(Σ). This explains why directly applying the tapering procedure to Σ̂T2
is not ideal.

In what follows, we propose an optimal robust covariance estimator based on the spectrum-
wise truncation technique introduced in Section 3.2. First, we introduce some notation. Let
Z(p,q)

i = (Yi,p,Yi,p+1, . . . ,Yi,p+q−1)ᵀ be a subvector of Yi given in (3.3). Accordingly, define
the truncated estimator of the principal submatrix of Σ as

Σ̂
(p,q),T
2 = Σ̂

(p,q),T
2 (τ) =

1
N

N∑
i=1

ψτ
(
Z(p,q)

i Z(p,q)ᵀ
i /2

)
, (5.1)

where τ is as in (3.8) with d replaced by q and v = ‖E{Z(p,q)
1 Z(p,q)ᵀ

1 }2‖2/4. Moreover, we
define an operator that embeds a small matrix into a large zero matrix: for a q × q matrix
A = (ak`)1≤k,`≤q, define the d×d matrix Ed

p(A) = (bk`)1≤k,`≤d, where p indicates the location
and

bk` =

ak−p+1,`−p+1 if p ≤ k, ` ≤ p + q − 1,

0 otherwise.

Our final robust covariance estimator is then defined as

Σ̂q =

d(d−1)/qe∑
j=−1

Ed
jq+1

(
Σ̂

( jq+1,2q),T
2

)
−

d(d−1)/qe∑
j=0

Ed
jq+1

(
Σ̂

( jq+1,q),T
2

)
. (5.2)
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Figure 2: Motivation of our estimator of bandable covariance matrices

The idea behind the construction above is that a bandable covariance matrix inFα(M0,M)
can be approximately decomposed into several principal submatrices of size 2q and q, as
shown in Figure 2. Using spectrum-wise truncated estimators Σ̂(p,q),T

2 and Σ̂(p,2q),T
2 to esti-

mate the corresponding principal submatrices in this decomposition leads to the proposed
estimator Σ̂q.

This construction is different from the literature where the banding or tapering proce-
dure is directly applied to an initial estimator, say the sample covariance matrix (Bickel and
Levina, 2008a; Cai, Zhang and Zhou, 2010). It is worth mentioning that a similar robust es-
timator can be constructed following the idea of Cai, Zhang and Zhou (2010), which differs
from our proposal. Computationally, our estimator evaluates as many as O(d/q) matrices
of size q × q (or 2q × 2q), while the method developed by Cai, Zhang and Zhou (2010)
computes as many as O(d) such matrices.

The following result shows that the estimator defined in (5.2) achieves near-optimal
rate of convergence under the spectral norm as long as X has uniformly bounded fourth
moments. The proof is deferred to the supplementary material.

Theorem 5.1. Assume that Σ ∈ Fα(M0,M) and supu∈Sd−1 kurt(uᵀX) ≤ M1 for some
constant M1 > 0. For any c0 > 0, take δ = (nc0d)−1 in the definition of τ for con-
structing principal submatrix estimators Σ̂(p,q),T

2 in (5.1). Then, with a bandwidth q �
{n/ log(nd)}1/(2α+1) ∧ d, the estimator Σ̂q defined in (5.2) is such that with probability at
least 1 − 2n−c0 ,

‖Σ̂q − Σ‖2 ≤ C min
{( log(nd)

n

)α/(2α+1)
,

√
d · log(nd)

n

}
,

where C > 0 is a constant depending only on M,M0,M1, c0.

According to the minimax lower bounds established by Cai, Zhang and Zhou (2010),
up to a logarithmic term our robust estimator achieves the optimal rate of convergence that
is enjoyed by the tapering estimator when the data are sub-Gaussian. Our estimator is not
fully data-driven, because the optimal choice of the bandwidth q depends on the unknown
parameter α. We refer to Liu and Ren (2018) for a Lepski-type adaptive procedure.

5.2 Low-Rank Covariance Matrix Estimation

In this section, we consider a structured model where Σ = cov(X) is approximately low-
rank. Using the trace-norm as a convex relaxation of the rank, we propose the following
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trace-norm penalized optimization program:

Σ̂T2,γ ∈ argmin
A∈Sd

{1
2

∥∥∥A − Σ̂T2
∥∥∥2

F + γ‖A‖tr
}
, (5.3)

where Sd denotes the set of d × d positive semi-definite matrices, γ > 0 is a regularization
parameter and Σ̂T2 , defined in (3.6), serves as a pilot estimator. This trace-penalized method
was first proposed by Lounici (2014) with the initial estimator taken to be the sample covari-
ance matrix, and later studied by Minsker (2018) using a different initial estimator. In fact,
given the initial estimator Σ̂T2 , the estimator given in (5.3) has the following closed-form
expression (Lounici, 2014):

Σ̂T2,γ =

d∑
k=1

max
{
λk

(
Σ̂T2

)
− γ, 0

}
× vk

(
Σ̂T2

)
vk

(
Σ̂T2

)ᵀ, (5.4)

where λ1(Σ̂T2 ) ≥ · · · ≥ λd(Σ̂T2 ) are the eigenvalues of Σ̂T2 in an non-increasing order and
v1(Σ̂T2 ), . . . , vd(Σ̂T2 ) are the associated orthonormal eigenvectors. The following theorem
provides a deviation bound for Σ̂T2,γ under the Frobenius norm. The proof follows directly
from Theorem 3.2 and Theorem 1 of Lounici (2014), and therefore is omitted.

Theorem 5.2. For any t > 0 and v > 0 satisfying (3.7), let

τ = v
√

m
log(2d) + t

and γ ≥ 2v

√
log(2d) + t

m
.

Then with probability at least 1 − e−t, the trace-penalized estimator Σ̂T2,γ satisfies∥∥∥Σ̂T2,γ − Σ∥∥∥2
F ≤ inf

A∈Sd

[
‖Σ − A‖2F + min

{
4γ‖A‖tr, 3γ2rank(A)

}]
and ∥∥∥Σ̂T2,γ − Σ∥∥∥2 ≤ 2γ.

In particular, if rank(Σ) ≤ r0, then with probability at least 1 − e−t,∥∥∥Σ̂T2,γ − Σ∥∥∥2
F ≤ min

{
4‖Σ‖2γ, 3γ2}r0. (5.5)

5.3 Sparse Precision Matrix Estimation

Our third example is related to sparse precision matrix estimation in high dimensions. Re-
cently, Avella-Medina et al. (2018) showed that minimax optimality is achievable within
a larger class of distributions if the sample covariance matrix is replaced by a robust pilot
estimator, and also provided a unified theory for covariance and precision matrix estimation
based on general pilot estimators. Specifically, Avella-Medina et al. (2018) robustifed the
CLIME estimator (Cai, Liu and Luo, 2011) using three different pilot estimators: adaptive
Huber, median-of-means and rank-based estimators. Based on the element-wise truncation
procedure and the difference of trace (D-trace) loss proposed by Zhang and Zou (2014), we
further consider a robust method for estimating the precision matrix Θ∗ = Σ−1 under spar-
sity, which represents a useful complement to the methods developed by Avella-Medina
et al. (2018).
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The advantage of using the D-trace loss is that it automatically results a symmetric
solution. Specifically, using the element-wise truncated estimator Σ̂T1 = Σ̂T1 (Γ) in (3.3) as
an initial estimate of Σ, we propose to solve

Θ̂ ∈ argmin
Θ∈Rd×d

{1
2
〈
Θ2, Σ̂T1

〉
− tr(Θ)︸                  ︷︷                  ︸

L(Θ)

+λ‖Θ‖`1

}
, (5.6)

where ‖Θ‖`1 =
∑

k,` |Θk`| forΘ = (Θk`)1≤k,`≤d. For simplicity, we writeL(Θ) = 〈Θ2, Σ̂T1 〉−

tr(Θ). Zhang and Zou (2014) imposed a positive definiteness constraint onΘ, and proposed
an alternating direction method of multipliers (ADMM) algorithm to solve the constrained
D-trace loss minimization. However, with the positive definiteness constraint, the ADMM
algorithm at each iteration computes the singular value decomposition of a d×d matrix, and
therefore is computationally intensive for large-scale data. In (5.6), we impose no constraint
on Θ primarily for computational simplicity.

Before presenting the main theorem, we need to introduce an assumption on the re-
stricted eigenvalue of the Hessian matrix of L(Θ).The Hessian can be written as

HΓ =
1
2
(
I ⊗ Σ̂T1 + Σ̂T1 ⊗ I

)
,

where Γ is the tuning parameter matrix in (3.3). For matrices A,B ∈ Rd2×d2
, we define

〈A,A〉B = vec(A)ᵀBvec(A), where vec(A) designates the d2-dimensional vector concate-
nating the columns of A. Let S = supp(Θ∗) ⊆ {1, . . . , d}2, the support set of Θ∗.

Definition 5.1 (Restricted eigenvalue for matrices). For any ξ > 0 and m ≥ 1, we define
the maximal and minimal restricted eigenvalues of the Hessian matrix HΓ as

κ−(Γ, ξ,m) = inf
W

{
〈W,W〉HΓ
‖W‖2F

: W ∈ Rd×d,W , 0,∃J such that S ⊆ J,

|J| ≤ m, ‖WJc‖`1 ≤ ξ‖WJ‖`1

}
;

κ+(Γ, ξ,m) = sup
W

{
〈W,W〉HΓ
‖W‖2F

: W ∈ Rd×d,W , 0,∃J such that S ⊆ J,

|J| ≤ m, ‖WJc‖`1 ≤ ξ‖WJ‖`1

}
.

Condition 5.1 (Restricted eigenvalue condition). We say restricted eigenvalue condition
with (Γ, 3, k) holds if 0 < κ− = κ−(Γ, 3, k) ≤ κ+(Γ, 3, k) = κ+ < ∞.

Condition 5.1 is a form of the localized restricted eigenvalue condition (Fan et al., 2018).
Moreover, we assume that the true precision matrix Θ∗ lies in the following class of matri-
ces:

U(s,M) =

{
Ω ∈ Rd×d : Ω = Ωᵀ,Ω � 0, ‖Ω‖1 ≤ M,

∑
k,`

I(Ωk` , 0) ≤ s
}
.

A similar class of precision matrices has been studied in the literature; see, for example,
Zhang and Zou (2014), Cai, Ren and Zhou (2016) and Sun et al. (2018). Recall the defini-
tion of V in Theorem 3.1. We are ready to present the main result, with the proof deferred
to the supplementary material.
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Theorem 5.3. Assume that Θ∗ = Σ−1 ∈ U(s,M). Let Γ ∈ Rd×d be as in Theorem 3.1 and
let λ satisfy

λ = 4C‖V‖max

√
2 log d + log δ−1

bn/2c
for some C ≥ M.

Assume Condition 5.1 is fulfilled with k = s and Γ specified above. Then with probability
at least 1 − 2δ, we have

∥∥∥Θ̂ −Θ∗∥∥∥F ≤ 6Cκ−1
− ‖V‖maxs1/2

√
2 log d + log δ−1

bn/2c
.

Remark 5. The nonasymptotic probabilistic bound in Theorem 5.3 is established under the
assumption that Condition 5.1 holds. It can be shown that Condition 5.1 is satisfied with
high probability as long as the coordinates of X have bounded fourth moments. The proof
is based on an argument similar to the proof of Lemma 4 in the work of Sun, Zhou and Fan
(2018), and thus is omitted here.

6 Numerical Study

In this section, we assess the numerical performance of proposed tail-robust covariance
estimators. We consider the element-wise truncated covariance estimator Σ̂T1 defined in
(3.3), the spectrum-wise truncated covariance estimator Σ̂T2 defined in (3.6), the Huber-type
M-estimator Σ̂H1 given in (3.13) and the adaptive Huber M-estimator Σ̂H3 in Section 4.2.

Throughout this section, we let {τk`}1≤k,`≤d = τ for Σ̂H1 . To compute Σ̂T2 and Σ̂H1 , the
robustification parameter τ is selected by five-fold cross-validation. The robustification pa-
rameters {τk`}1≤k,`≤d for Σ̂T1 are tuned by solving the equation (4.2), and thus is an adaptive
elementwise-truncated estimator. To implement the adaptive Huber M-estimator Σ̂H3 , we
calibrate {τk`}1≤k,`≤d and estimate {σk`}1≤k,`≤d simultaneously by solving the equation sys-
tem (4.3) as described in Algorithm 1.

We first generate a data matrix Y ∈ Rn×d with rows being i.i.d. vectors from a distribu-
tion with mean 0 and covariance matrix Id. We then rescaled the data and set X = YΣ1/2 as
the final data matrix, where Σ ∈ Rd×d is a structured covariance matrix. We consider four
distribution models outlined below:

(1) (Normal model). The rows of Y are i.i.d. generated from the standard normal distri-
bution.

(2) (Student’s t model). Y = Z/
√

3, where the entries of Z are i.i.d. with Student’s
distribution with 3 degrees of freedom.

(3) (Pareto model). Y = 4Z/3, where the entries of Z are i.i.d. with Pareto distribution
with shape parameter 3 and scale parameter 1.

(4) (Log-normal model). Y = exp{0.5 + Z}/(e3 − e2), where the entries of Z are i.i.d.
with standard normal distribution.
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The covariance matrix Σ has one of the following three forms:

(a) (Diagonal structure). Σ = Id;

(b) (Equal correlation structure). σk` = 1 for k = ` and σk` = 0.5 when k , `;

(c) (Power decay structure). σk` = 1 for k = ` and σk` = 0.5|k−`| when k , `.

In each setting, we choose (n, d) as (50, 100), (50, 200) and (100, 200), and simulate
200 replications for each scenario. The performance is assessed by the relative mean error
(RME) under spectral, max or Frobenius norm:

RME =

∑200
i=1 ‖Σ̂i − Σ‖2,max,F∑200
i=1 ‖Σ̃i − Σ‖2,max,F

,

where Σ̂i is the estimate of Σ in the ith simulation using one of the four robust methods
and Σ̃i denotes the sample covariance estimate that serves as a benchmark. The smaller the
RME is, the more improvement the robust method achieves.

Tables 1–3 summarize the simulation results, which indicate that all the robust estima-
tors outperform the sample covariance matrix by a visible margin when data are generated
from a heavy-tailed or an asymmetric distribution. On the other hand, the proposed estima-
tors perform almost as well as the sample covariance matrix when the data follows a normal
distribution, indicating high efficiencies in this case. The performances of the four robust
estimators are comparable in all scenarios: the spectrum-wise truncated covariance estima-
tor Σ̂T2 has the smallest RME under spectral norm, while the other three estimators perform
better under max and Frobenius norms. This outcome is inline with our intuition discussed
in Section 3. Furthermore, the computationally efficient adaptive Huber M-estimator Σ̂H3
performs comparably as the Huber-type M-estimator Σ̂H1 where the robustification param-
eters are chosen by cross-validation.

7 Discussion

In this paper, we surveyed and unified selected recent results on covariance estimation for
heavy-tailed distributions. More specifically, we proposed element-wise and spectrum-wise
truncation techniques to robustify the sample covariance matrix. The robustness, referred
to as the tail robustness, is demonstrated by finite-sample deviation analysis in the presence
of heavy-tailed data: the proposed estimators achieve exponential-type deviation bounds
under mild moment conditions. We emphasize that the tail robustness is different from the
classical notion of robustness that is often characterized by the breakdown point (Hampel,
1971). Nevertheless, it does not provide any information on the convergence properties of
an estimator, such as consistency and efficiency. Tail robustness is a concept that combines
robustness, consistency, and finite-sample error bounds.

We discussed three types of procedures in Section 3: truncation-based methods, their
M-estimation counterparts and the median-of-means method. Truncated estimators have
closed-form expressions and therefore are easy to implement in practice. The correspond-
ing M-estimators achieve comparable sub-Gaussian-type error bounds, which are of the
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Table 1: RME under diagonal structure.
n = 50, p = 100

Normal t3 Pareto Log-normal
2 max F 2 max F 2 max F 2 max F

Σ̂H1 0.97 0.95 0.98 0.37 0.39 0.65 0.27 0.21 0.47 0.27 0.21 0.51
Σ̂H3 0.97 0.90 0.96 0.37 0.36 0.59 0.29 0.24 0.45 0.24 0.19 0.49
Σ̂T1 0.97 0.91 0.96 0.40 0.38 0.62 0.27 0.23 0.42 0.25 0.18 0.50
Σ̂T2 0.96 0.99 0.98 0.34 0.41 0.67 0.26 0.25 0.44 0.25 0.26 0.56

n = 50, p = 200
Normal t3 Pareto Log-normal

2 max F 2 max F 2 max F 2 max F
Σ̂H1 0.98 0.95 0.98 0.32 0.29 0.60 0.29 0.23 0.41 0.24 0.20 0.43
Σ̂H3 0.98 0.96 0.97 0.31 0.26 0.54 0.27 0.20 0.42 0.24 0.19 0.38
Σ̂T1 0.97 0.95 0.96 0.33 0.29 0.63 0.26 0.19 0.39 0.23 0.18 0.42
Σ̂T2 0.95 0.98 0.95 0.31 0.33 0.65 0.24 0.26 0.48 0.22 0.23 0.48

n = 100, p = 200
Normal t3 Pareto Log-normal

2 max F 2 max F 2 max F 2 max F
Σ̂H1 0.99 0.98 0.99 0.40 0.47 0.58 0.46 0.49 0.51 0.32 0.20 0.47
Σ̂H3 0.95 0.99 0.98 0.39 0.47 0.59 0.45 0.45 0.48 0.28 0.21 0.49
Σ̂T1 0.97 0.94 0.97 0.38 0.45 0.57 0.46 0.49 0.51 0.26 0.27 0.47
Σ̂T2 0.94 1.01 0.95 0.33 0.51 0.64 0.42 0.53 0.61 0.28 0.27 0.58

Mean relative errors of the the four robust estimators Σ̂H1 , Σ̂H3 , Σ̂T1 and Σ̂T2 over 200 repli-
cations when the true covariance matrix has a diagonal structure. 2, max and F denote the
spectral, max and Frobenius norms, respectively.

22



Table 2: RME under equal correlation structure.
n = 50, p = 100

Normal t3 Pareto Log-normal
2 max F 2 max F 2 max F 2 max F

Σ̂H1 0.97 0.94 0.97 0.68 0.12 0.68 0.68 0.23 0.59 0.58 0.27 0.46
Σ̂H3 0.96 0.95 0.96 0.69 0.15 0.64 0.62 0.21 0.59 0.52 0.27 0.44
Σ̂T1 0.97 0.96 0.97 0.67 0.14 0.67 0.64 0.22 0.57 0.59 0.28 0.47
Σ̂T2 0.95 0.99 1.02 0.56 0.26 0.71 0.62 0.27 0.60 0.50 0.33 0.51

n = 50, p = 200
Normal t3 Pareto Log-normal

2 max F 2 max F 2 max F 2 max F
Σ̂H1 0.97 0.94 0.98 0.77 0.21 0.76 0.67 0.34 0.50 0.69 0.23 0.67
Σ̂H3 1.00 0.97 0.98 0.77 0.22 0.73 0.63 0.31 0.50 0.70 0.23 0.68
Σ̂T1 0.99 0.97 0.96 0.78 0.24 0.71 0.63 0.33 0.46 0.70 0.23 0.68
Σ̂T2 0.95 0.98 1.00 0.74 0.35 0.80 0.61 0.34 0.51 0.66 0.31 0.72

n = 100, p = 200
Normal t3 Pareto Log-normal

2 max F 2 max F 2 max F 2 max F
Σ̂H1 1.00 0.96 0.99 0.79 0.23 0.78 0.63 0.46 0.57 0.53 0.21 0.47
Σ̂H3 0.98 0.98 0.97 0.79 0.24 0.79 0.69 0.48 0.58 0.57 0.22 0.48
Σ̂T1 1.00 1.00 0.99 0.78 0.21 0.77 0.65 0.45 0.57 0.55 0.23 0.50
Σ̂T2 0.97 1.02 1.03 0.73 0.32 0.83 0.62 0.54 0.61 0.50 0.29 0.55

Table 3: RME under power decay structure.
n = 50, p = 100

Normal t3 Pareto Log-normal
2 max F 2 max F 2 max F 2 max F

Σ̂H1 0.98 0.95 0.98 0.58 0.30 0.71 0.48 0.29 0.57 0.69 0.39 0.79
Σ̂H3 0.95 0.95 0.93 0.58 0.28 0.72 0.48 0.26 0.58 0.70 0.39 0.78
Σ̂T1 0.97 0.98 0.96 0.59 0.30 0.71 0.49 0.26 0.57 0.72 0.39 0.77
Σ̂T2 0.98 0.98 0.99 0.52 0.33 0.77 0.47 0.31 0.60 0.66 0.45 0.81

n = 50, p = 200
Normal t3 Pareto Log-normal

2 max F 2 max F 2 max F 2 max F
Σ̂H1 0.98 0.95 0.97 0.58 0.30 0.71 0.48 0.29 0.57 0.69 0.39 0.79
Σ̂H3 0.96 0.93 0.95 0.56 0.29 0.66 0.49 0.26 0.55 0.72 0.38 0.77
Σ̂T1 0.98 0.97 0.97 0.59 0.27 0.71 0.48 0.26 0.58 0.70 0.36 0.80
Σ̂T2 0.98 0.98 1.01 0.54 0.24 0.76 0.41 0.31 0.60 0.68 0.42 0.82

n = 100, p = 200
Normal t3 Pareto Log-normal

2 max F 2 max F 2 max F 2 max F
Σ̂H1 0.99 0.98 1.00 0.45 0.25 0.66 0.42 0.31 0.54 0.48 0.35 0.62
Σ̂H3 0.98 0.98 0.99 0.47 0.26 0.68 0.41 0.30 0.53 0.47 0.34 0.61
Σ̂T1 1.00 0.99 1.00 0.50 0.30 0.68 0.41 0.34 0.56 0.49 0.38 0.64
Σ̂T2 0.99 1.04 1.01 0.41 0.31 0.70 0.40 0.39 0.59 0.43 0.43 0.69
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order
√

log(d/δ)/n under the max norm and of order
√

r(Σ) log(d/δ)/n under the spectral
norm, but with sharper moment-dependent constants. Computationally, M-estimators can
be efficiently evaluated via gradient descent method or iteratively reweighted least squares
algorithm. Both truncated and M-estimators involve robustification parameters that need to
be calibrated to fit the noise level of the problem. Adaptation and tuning of these parame-
ters are discussed in Section 4. The MOM estimator proposed in Section 3.4 is tuning-free
because the number of blocks depends neither on noise level nor on confidence level. Fol-
lowing the terminology proposed by Devroye et al. (2016), truncation-based estimators are
δ-dependent estimators as they depend on the confidence level 1 − δ at which one aims to
control, while the MOM estimator achieves sub-Gaussian error bounds simultaneously at
all confidence levels in a certain range but requires slightly stronger assumptions, namely,
the existence of sixth moments instead of fourth.

Three examples discussed in Section 5 illustrate that both element-wise and spectrum-
wise truncated covariance estimators can serve as building blocks for a variety of estima-
tion problems in high dimensions. A natural question is whether one can construct a sin-
gle robust estimator that achieves exponentially fast concentration both element-wise and
spectrum-wise, that is, satisfies the results in Theorems 3.1 and 3.2 simultaneously. Here we
discuss a theoretical solution to this question. In fact, one can arbitrarily pick one element,
denoted as Σ̂T , from the collection of matrices

H =

{
S ∈ Rd×d : S = Sᵀ,

∥∥∥Σ̂T2 − S
∥∥∥

2 ≤ 2v

√
log(2d) + log δ−1

m

and
∥∥∥Σ̂T1 − S

∥∥∥
max ≤ 2‖V‖max

√
2 log d + log δ−1

m

}
.

Due to Theorems 3.1 and 3.2, with probability at least 1−3δ, the setH is non-empty since it
contains the true covariance matrix Σ. Therefore, it follows from the the triangle inequality
that the inequalities

∥∥∥Σ̂T − Σ∥∥∥2 ≤ 4v

√
log(2d) + log δ−1

m
and

∥∥∥Σ̂T − Σ∥∥∥max ≤ 4‖V‖max

√
2 log d + log δ−1

m

hold simultaneously with probability at least 1 − 3δ.

Acknowledgments

The authors would like to thank the referees, Associate Editor and Editor for constructive
suggestions that led to an improved paper. S. Minsker is supported by NSF Grant DMS-
1712956, Z. Ren is supported by NSF Grant DMS-1812030, Q. Sun is supported by a
Connaught Award and NSERC Grant RGPIN-2018-06484 and W.-X. Zhou acknowledges
support from NSF Grant DMS-1811376.

24



References

Avella-Medina, M., Battey, H. S., Fan, J. and Li, Q. (2018). Robust estimation of high-
dimensional covariance and precision matrices. Biometrika 105 271–284.

Bickel, P. J. and Levina, E. (2008a). Regularized estimation of large covariance matrices.
Ann. Statist. 36 199–227.

Bickel, P. J. and Levina, E. (2008b). Covariance regularization by thresholding. Ann. Statist.
36 2577–2604.

Brownlees, C., Joly, E. and Lugosi, G. (2015). Empirical risk minimization for heavy-tailed
losses. Ann. Statist. 43 2507–2536.

Butler, R. W., Davies, P. L. and Jhun, M. (1993). Asymptotics for the minimum covariance
determinant estimator. Ann. Statist. 21 1385–1400.

Cai, T. T., Liu, W. and Luo, X. (2011). A constrained `1 minimization approach to sparse
precision matrix estimation. J. Amer. Statist. Assoc. 106 594–607.

Cai, T. T., Ren, Z and Zhou, H. H. (2016). Estimating structured high-dimensional covari-
ance and precision matrices: Optimal rates and adaptive estimation. Electron. J. Stat. 10
1–59.

Cai, T. T., Zhang, C.-H. and Zhou, H. H. (2010). Optimal rates of convergence for covari-
ance matrix estimation. Ann. Statist. 38 2118–2144.

Catoni, O. (2012). Challenging the empirical mean and empirical variance: A deviation
study. Ann. Inst. Henri Poincaré Probab. Stat. 48 1148–1185.
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