SUPPLEMENTAL MATERIAL TO “MODEL SELECTION
AND STRUCTURE SPECIFICATION IN ULTRA-HIGH
DIMENSIONAL GENERALISED SEMI-VARYING
COEFFICIENT MODELS”

By DEGur L1 , YuaN KE AND WENYANG ZHANG*

University of York

In this supplemental material, we provide the detailed proofs of the main
results stated in Section 3 of the main document as well as some technical
lemmas which are useful in our proofs.

APPENDIX B: PROOFS OF THE MAIN RESULTS

In this appendix, we give the detailed proofs of the main theoretical results
developed in Section 3.

Proof of Proposition 3.1 (i). Recall that

~ ~ ~ T g = = T
ar=[a(Up), - ,aq,(Ux) |, be=1[a1(Us), - ,aa,[Us) |
The basic idea used in the proof of this proposition is similar to that in
Bickel et al (2009) and Lian (2012). However, as the kernel-based smoothing
method is used, we need to derive the uniform convergence rates for the

kernel-based quantities, which makes the technical argument more compli-
cated than that in Bickel et al (2009) and Lian (2012).

We start with the proof that with probability approaching one, uniformly
fork=1,---,n,

dn dn Sn2 Snl
B max{ > ldul D ldlp <b( D Il + Y ldinl),
j=sna+1 j=smit1 =1 =1

where b = max{A1/A2, A\2/A1} + ¢ for any small § > 0, where
djk = a;(Uy) — a;(Uy) and djx = h[a;(Uy) — a;(Us)]

forj=1,---,d,and k=1,--- ,n.

*Correspondent author. Email: wenyang.zhang@york.ac.uk
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2 D. LI, Y. KE AND W. ZHANG
By the definitions of a; and l~)k, we readily have
(B2) Onk (aka Bk) > Qnk (ak0> bk0)7

where a;g and byg are defined in Section 2 of the main document. From
(B.2), we have

(B:3)  Lok(k, br) — Lok (a0, bro)
dn dn, dn dn
=D AR SACA R DA S b
Jj=1 Jj=1 j=1 j=1

By the concavity condition of £(-,-) (c.f., Assumption 2(ii)), we may show
that

(B.4) Lo (3k, br) — Lok (aro, bro) < df Lo,
where
. 1 — dn X
Lok = ;ql [;%(Uk) + a;(Up) (Ui — Ur)zig, yi] ( %l X, ) :
Kn(U; — Uy)

and dg = (dig, -, da ks dig, - s da, k)"

Appendix C, we may show that

. By Lemma C.1 which is given in

d
1 & n
B.5 = AUNws v i Ko (U — U
B w2 el 2, oW wlay kU= U)

B logh—1

and
(B.6)
n d
1 - U,—-U
max sup - Z q1 [ Z ajl(Ui)xijl,yi]xij(Tk)Kh(Ui — Uy)

Isisdnagksn | WD T

o (/).
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MODEL SELECTION IN GSVCM 3

Then, by (B.5), (B.6), the standard calculation in kernel-based smoothing
and the argument in the proof of Lemma C.1, we may show that

. log h™! In LI
(B.7) dgﬁnk < Op( O%lh + Sn2h2) . (Z ‘djk‘ + Z ’djk‘)
j=1 j=1

uniformly for k =1,--- ,n.

On the other hand, by the triangle inequality, we may prove that

d» dn
(B.8) M| D@ U = la (U]
j=1 j=1
Sn2 dn
= M (@) = la;U) + M Y @ (U]
j=1 J=sn2+1
Sn2 dn
> =) ldpl+ a0 Y .
j=1 j=$n2+1

Similarly, we also have

dn dn Snl dn
(B.9) da| Y 1ag(Ui)l = Y lag(Uil] = =D ldiel +d2 Y- Il
j=1 j=1 7=1 Jj=sn1+1

By (B.3), (B.4), (B.7)—(B.9) and the condition that \/lognlz_l + sn2h? =
o(A1 4+ A2) and A\ x A2 (c.f., Assumption 5), we can complete the proof of
(B.1).

Let

u; = (un,"' ,U1dn)T and up = (Um,"' ’u2dn)T

be two d,-dimensional column vectors and define

Q(Co) = { (b ub)": ui]? = uall? = G,
dn, S

(Tl + fuzg) < 204+ 5) Y (fursl + luzsl) },
J=1 j=1

where Cj is a positive constant which could be sufficiently large. By the
concavity of £(-,-), we only need to prove that there exists a local maximiser
(ak, hby) in the interior of {(ago+7nu1, Abro+7nu2) : (uf, uj)’ € Q(Co)},
where v, = \/sp2A1.
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4 D. LI, Y. KE AND W. ZHANG

Observe that

(B.10)  Qui [ako + ynu1, bro + ymuz/h] — Qui(aro, bro) ank

where

k(1) = Lupk(aro + yau1, bro + ynuz/h) — Lok (ako, bro),
dn dn

T2 = =M (Y 1o Uk) +mursl = 3l (U)])),
P j=1
dn, dn,

Zk(3) = —/\2<Z |ty (Ur) + iz — Y |hdj(Uk)|)-
j=1 Jj=1

We first consider Z,;(1). Letting u = (u},ud)" and by the definition of
L (-, ) in Section 2, we have

P . 1 .. .
(B.11) LMUNWM%M+§ﬁJQM%h@m

where a, X b, denotes that a, = bn(1+0p(1)), (af,bj) lies between (ag +
Ynur, bro + Yauz/h) and (ao, byo),

; Lo (ag, bi,0)  Lu(ag, b, 1
Enk(ak,bk):[ k(ak, by, 0) Zk(ak k )]

Lo(ag, b, 1) Lok(ag, by, 2)
with
. U — Ui\
Lok(ag, bg,l) = —qu Z [k + Bk (Us — Up)wij, v ( 0 k) :
7=1
X X] Ky (U; — Uy)
for [ =0,1,2, where a; = (0411@7 e ,adnk)T and by = (ﬁlk; e ,Bdnk)T-

Note that for u € Q(Cy),

dn Sn2
(B.12) > (gl + Juggl) <200 40) > (funy| + [usg)).
j=1 j=1

Using Lemma C.1 in Appendix C, the Cauchy-Schwarz inequality and (B.12),
we can show that uniformly for k=1,--- ,n,

(B.13) " Lok, = op(77) - [[ul].
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MODEL SELECTION IN GSVCM 5

On the other hand, note that

1 .
(B.14) QVZuTﬁnk(az,bZ)u
1 2 J * ok ~ 1
= 5%u [Enk(akabk)_EN(Uk)]u+27n "L (Up)u,

where £,(Uy) is defined at the beginning of Appendix A. By Assumption
2(iii), we readily have

1 " 1
(B.15) St Lo(Up)u < =2 praguf|* <0

uniformly for & = 1,---,n. By (B.12), Assumptions 2(ii), the condition
s25M1 = o(1) in Assumption 5 and following the proof of Lemma C.1, we
may prove that uniformly for k =1,--- ,n,

(B.16)  42u’ [ﬁnk(az,b}';) - En(Uk)]u
dn Sn2

= 0p (o3[ S tunst + lus] ) = 0r (33 husst + )] )

Jj=1 j=1
= 0p (B2 al?) = op(42) - (u]l?).

Hence, by (B.11) and (B.13)-(B.16), when n is sufficiently large and Cj is
large enough, we have

Pl
(B.17) T(1) 2 5% u' L, (Up)u.

We next consider Z,,;(2) and Z,x(3). It is easy to show that

dn
(B.18) Zoi(2) = —Al[ZIaJ Uk) + Yot —Zlaj Us) |}
j=1 Jj=1
Sn2 dn
< N\ Z [la; (Uk)| = |a;(Uk) + vnuis]] — M Z [yl
j=1 Jj=snp2+1
dn
= Op(y)-lml =M D |ymual.
Jj=sn2+1

Similarly, noting that A\; o< Ay we also have

dn

(B.19) Tok(3) = Op(7a) - luall = A2 D |ymugl-
j:5n1+1
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6 D. LI, Y. KE AND W. ZHANG

Hence, by (B.10) and (B.17)—(B.19), we can prove that the leading term of
Tk (1) +Znk(2) + Ik (3) is negative in probability uniformly in & by choosing
sufficiently large Cj. Hence, we may find a local maximiser (ag, hby) in the
interior of { (axo+ynu1, hbgo+y,u2) = (uf, ub)t € Q(Cp)}, which completes
the proof of Proposition 3.1(i). 0

Proof of Proposition 3.1 (ii). The proof is similar to that in the proof
of Proposition 3.1(i) with the role of Lemma C.1 replaced by Lemma C.2
(given in Appendix C). O

Proof of Theorem 3.1. We start with the proof of the convergence rates

for the biased oracle estimators XZO and BZO. According to the definition, we
have

(B.20) (ZZO,EZO) = arg max Q2 (A°, B°),

where A° and B° are defined as in Section 3. Recall that Ag and By are the
vectors of the true functional coefficients and their derivative functions, and
denote

Uy = [ (1), w )], e = [u5(1), ub )],

where both u; (k) and ua(k) are d,,-dimensional column vectors, k = 1,--- ,n,
the last d,, — sp2 elements of uy (k) and the last d,, — s,1 elements of uy(k)
are zeroes. Define

Q(C) = {U, Uz)" + |t = [lele]® = nCi},

where C, is a positive constant which can be sufficiently large.

For (UL, U3)' € QF(C.), observe that

(B.21) Q2 (Ao +ith, Bo+7;Us/h) — Q%(Ao, Bo) = Ty (1) + I, (2) + Zn(3),

where v} = \/sp2/nh,

Tn(1) = L5(Ao+alh, Bo + yalha/h) — L5 (Ao, Bo),
dn dn

7.(2) = Y_pn(laDlegol = pallag)llego + iyl
j—l j—l

Zp)\* ||h/8](]” - prk ||hB]0 + 7nu2]||
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MODEL SELECTION IN GSVCM 7

in WhiCh aj() = [aj(Ul), e ,aj(Un)]T, IBjO = [dj(Ul), e ,dj(Un)]T, U.1j =
[urj (1), urj ()] ugy = [ug; (1), ugj(n)]", urj(k) and up;(k) are the
j-th component of vectors u; (k) and uz(k), respectively.

For Z,(1), by the definition of LS (-,-) in Section 2, we have
(B.22) Tn(1) = Tu(4) + Ta(5) + op((4)?) - (Ie4a]* + [ ).
where

To(4) = Vo (U, U)La(Ao, Bo),
1 W o~ o~
Z.(5) = 5(7;)2])2(”17“2)571(-’47“Bn)vn(ulaUQ)-
The detailed proof of (B.22) will be provided in Appendix C below. By some

elementary but tedious calculations, we can show that
(B.23) To(4) = Op ()" ') - (Ul + V1))

The detailed proof of (B.23) will be also given in Appendix C below. For
Z,(5), note that

T(5) = G OmVEQaU) [fn(An, Br) — Lo, Bo) | Va0, 1) +

1 .
5 )2V U, Ua) L (Ao, Bo)Va (U, Uo)

(B.24) = Z,(6) + Zn(7).

By Assumption 2(iii) and the definitions of U; and Uy, we may show that
1 *

(B.25) Zn(7) < —§p1(%)2(|lulll2 +te]?) < 0.

By Assumption 2(ii) and using Proposition 3.1, we can prove that

(B.26) Zo(6) = or((7)?) - (L4l + 1ta]?),

which, together with (B.22)—(B.25), implies that Z,,(7) is the leading term
of Z,,(1). Hence, when n is sufficiently large, by taking C, large enough, we
have

£

(B.27) T, (1) (vO2VY Uy, Us) L (Ao, Bo) Vi Uy, Us).

N | =
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8 D. LI, Y. KE AND W. ZHANG

We next consider Z,(2). Noting that uy; = 0 for j = spo41,-- ,dn, We
have

dn dn
7.2) = Y pallagllegoll =Y palail)llago + viuyll
s =1
Sn2
= Y pnllagh (legoll = llego + viaull)-
7=1

By Proposition 3.1 and (A.4) in Assumption 6, we may show that with
probability approaching one,

P L 12
(2in llegll > gbon

which together with the condition of Ay = o(n'/?) and the SCAD structure,
implies that

(B.28) In(2) = op((7)?) - lleds 1.
Similarly, we may also show that
(B.29) In(3) = op((7)?) - lltl2]?,
by noting that
~ 1
min Dj; > “bon/2.
1<j<sn1 2

Hence, by (B.21) and (B.27)-(B.29), we can prove that the leading term
of Z,,(1) + Z,,(2) + Z,,(3) is negative in probability, which indicates that for
any e > 0, there exists a sufficiently large C > 0 such that

(B.30) P sup Q2 (Aol Bo+is/h) < Qi(AO,BO)} >1—e
(U, U2)EQE (Cy)

for large n. Therefore, we may show that

1,—bo 2 Sn2 1 -5b0 2 Sn2

which is (3.2) in Theorem 3.1.

We next complete the proof of Theorem 3.1. Define
(B.32) /\/la:(aj: 1§j§3n2) and MI@:(h,Bj: 1§j§sn1),
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MODEL SELECTION IN GSVCM 9

which correspond the non-zero components in Ay and By, respectively. Let
L5 (A, BIMa), £5,(A,BIMg), L5,(A, Blay) and L5,(A, B|hj3;) be the gradi-
ent vectors of LS (A, B) with respect to Mg, M,B’ o and hf3;, respectively.
Define the sub-gradient of the penalty terms as

. -~ — . ~ aSnZ
PMa) = [ (1@t i ([l 2
Sn2
(65] (6] T
pM(HalH)”TTHW” 7p>\4(HaSn2H)H S:2 ||:| ’
. ~ ﬁ . ~ ﬁsnll
P(Mﬁ) = |:p)\4(D1)Hﬁ111H7"'7p)\4(DSn1)||ﬁsn1H7"'7
. ~ ﬂln . = 55 mn ]T
D) g (D) .
R TN R e T

Following the proof of Theorem 1 in Fan et al (2014) (see also the proof
of Theorem 1 in Fan and Lv, 2011), the objective function Q2 (A, B) has a

. . —bo 5boy .
unique maximiser (A, B, ) if

(B.33) L3(A BIMa) = P(Ma) = Ons,,
(B.34) L3 (A, BIMg) = P(Mg) = Ops,.,

50 ) . . ~
(B.35) somax (A Bleg)l < min Py (las]),
(B.36) somax  La(ABIRB))I < | min D (D;)

hold at A = Z,bf and B = EZO. Hence, we next only need to prove (B.33)—
(B.36).

By the definition of the biased oracle estimators XZO and Bzo, it is easy to
verify (B.33) and (B.34). We next only show the proof of (B.35) as the proof
of (B.36) is analogous. By Proposition 3.1 and the condition of (n.s,2)Y/?\; =
o(A41), we may show that

(B.37) Jomin_ Pl = Aq

with probability approaching one. On the other hand, for the left hand side
of (B.35), we can prove that

(B.38)

max_|[£5(A, Blay)|| = Op (k™2 [(log ™)'/ + 5,57 + (nh)/252,07))

Sn2+1Sj§dn
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10 D. LI, Y. KE AND W. ZHANG

when A = XZO and B = EI;O. The detailed proof of (B.38) will be given in
Appendix C below. Using (B.37), (B.38) and (A.3) in Assumption 6, we may
prove (B.35). Then, the proof of Theorem 3.1 is completed. O

Proof of Theorem 3.2. The proof is similar to the proof of Theorem
2 in Wang and Xia (2009) with some modifications. Recall that E?O(Uk),
jg=1,---,852, k = 1,--- ,n, are the biased oracle estimators of a;(Uj)
which are obtained by maximising the objective function Q2 (A°, B°).

Let
D’ = ( max [al(Uy) — al®(Uy)

T
—b
n max , -+, max ‘asil(Uk)—agsl(Uk)D ,

1<k<n

and
_ T 1 &
bo —bo —bo —=bo —bo .
C, = (csn1+1,~~- 1Cony | » Where €7 = - g a; (Uk), j=sn1+1,--, sno.
k=1

By Theorem 3.1, in order to prove (3.3) and (3.4), we only need to show
that

(B.39) VahBID’ = op(1), /nA~L (éﬁ’f - c;;") = op(1).

For k. =1,--- ,n, denote

a(Uy) = [al(Uk), - ale,(Uk), 0, 0],
abO(Uk) = [E?O(Uk‘)a U ,HZZQ(Uk)a 07 U 7O]T7

where the last d,, — sp2 elements in the above two vectors are zeros, and let
b"(Uy) and Bbo(Uk) be defined analogously. Then, using the first-order con-
dition, we may show that the unbiased oracle estimates satisfy the following
equation:

a"(Uy) — ay

(BA0) 0y, = Reyu Lok (8k: br) + Reps Lok (3, br) hbU (Uy) — hby,

uniformly for 1 <k <n, where R,,, = [Isn2, Nsmx(zdn_sm)} with I being
an s X s identity matrix and N,xs being a r x s null matrix.

Following the proof of Theorem 3.1, we can also show that the biased
oracle estimates satisfy the following equation:
(B.41)
ﬁbO(U k) - Ek

0s,, = Rs,s [’nk (ak’ Bk) + Rz £nk (5k’ Bk) [ tho(Uk) — th

] — P*(Uk)
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MODEL SELECTION IN GSVCM 11

uniformly for 1 < k < n, where

7bo
P (UL) = [pM(IIHII)H(g"“') i (G ) B TOTT

[z, |

620 = [E?O(Ul), e 7a?"(Un)]T. By Proposition 3.1 and (A.4) in Assumption

6, we may show that

. _ 1
(Join oyl > min flegol| - max iy — evoll 2 bV

with probability approaching one, which together with the SCAD structure,
indicates that the penalty term P*(Uj) in (B.41) can be asymptotically ig-
nored. Then, by (B.40), (B.41) and the standard argument, we may complete
the proof of (B.39). O

APPENDIX C: PROOFS OF SOME TECHNICAL LEMMAS
Define

U,—u
h

fori=1,...,n,7=1,...,d,,1=0,1,2,---, where

(Cl) Zij(u, l) = Qilacij( )lKh(Ui — u), u € [0, 1]

Qin=aq Z aj1 xzyuyz]

Jji1=1

Under different moment conditions on the random element Q;17;;, in Lem-
mas C.1 and C.2 below, we give the uniform consistency results of the non-
parametric kernel-based estimators in the ultra-high dimensional case, which
are of independent interest. Analogous uniform consistency results also hold
when ;125 in (C.1) is replaced by Qx5 or M (X, U;, yi)Tijxip i, where
Qi2 and M (X;,U;,y;) are defined in Appendix A of the main document.

Lemma C.1. Suppose that Assumptions 1 and 3 in Appendiz A are sat-
isfied. Moreover, suppose that the dimension d, o« n™ with 0 < 171 < 00,
E(Qil}Xi,Ui) = 0 a.s., the moment condition (A.1) in Appendiz A holds
for some mg > 2, and

nh
nd,,)2/™o log h—1
( g

(C.2) hoxn™ with 0 < 6, <1, — 0.
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12 D. LI, Y. KE AND W. ZHANG

Then we have, as n — 00,

(C.3) max sup —ZZZJ u,l) ‘ _ ( M)1/2>

1<j<dn, u€0,1]

foranyl=0,1,2,---

Proof. For simplicity, let &, = (%)1/ ?. The main idea of proving (C.3)

is to consider covering the interval [0, 1] by a finite number of subsets U (k)
which are centered at wj with radius r,, = &,h?. Letting A, be the total
number of such subsets U(k), NV, = O(r;!). It is easy to show that

(C.4) max sup ‘—ZZ” (u,l ‘

1<5<dn, u€l0,1]
max max |— g Zij(uk,l)‘—k
1<j<dn 1<k<N, [N ;

IN

max max  Sup ‘—ZZUUZ Z z](uk,l)}

1<j<dn 1<k<Nn yeU (k —1

= 1L, +11,9.

By the continuity condition on K (-) in Assumption 1 and using the definition
of r,, we readily have

(C.5) M = Op(2) = Op(&n).

For 11,1, we apply the truncation technique and the Bernstein inequality
for i.i.d. random variables (c.f., Lemma 2.2.9 in van der Vaart and Wellner,
1996) to obtain the convergence rate. Let M,, = Mg(ndn)l/mo,

ZU(U 1) =Zij( {‘Qllx’u‘ < M, }

Zij(u,1) =235 (u, 1) = Zij(u, 1),

where I{-} is an indicator function and M5 is some positive constant. Hence
we have

(C.6) II,; < max max
1<j<dpn 1<kE<Np

7112 {Zij(up, 1) — E[Zij(uk’l)]}‘ +

1<j<dn 1<k<N, [N

= II,3 +1II,4.

max max |2 5" {Zig(up, 1) — E[Zy )]}
=1
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MODEL SELECTION IN GSVCM 13

Note that for M3 > 0 and any ¢ > 0, by (A.1), (C.2) and the Markov
inequality,

dn n
ZZP (‘Qilmij‘ > M,)

j=1i=1
< M;™E[|Qaxi;|™] <e,

P (Hn4 > Man)

IN

if we choose My > E[|Qi1zij|™] L/mo 1 /mo Then, by letting  be arbitrarily
small, we can show that

(C.7) My = Op(&).

Note that

(C.8) (Zis (1) — E[Zij (s 1)]| < M‘*}f”"
and

(C.9) Var|Zij(ug,1)] < %

for some M, > 0. By (C.2), (C.7), (C.8) and Lemma 2.2.9 in van der Vaart
and Wellner (1996), we have

—n* MG !
2nM4/h + 2M4M3n£nMn/(3h)

< 2d,N, exp{ — Mslog h_l} =o(1),

(C.10) P(Ilps > Ma,) < 2dnNo exp{

where M3 is chosen such that
M3 > 3My, d, N, exp{ — Mj3log h_l} =o(1),

which are possible as d,, is diverging with a polynomial rate. Hence we have

(C.11) I3 = Op(&)-
In view of (C.4)-(C.7) and (C.11), we have shown (C.3), completing the
proof of Lemma C.1. O

Lemma C.2. Suppose that Assumptions 1 and 3 in Appendiz A are satisfied.
Moreover, suppose that the dimension d, x exp{(nh)™} with 0 < 75 < 1,
E(Qil‘Xi, U,») =0 a.s., the moment condition (A.2) in Appendiz A holds for
allm > 2, and h & n=% with 0 < §; < 1. Then we have, as n — 0o,

1 B log h™t\ 7,/
(C.12) ér;i)én uzl[lor,)” ‘E 2 Zij(u, l)‘ = OP((T) )
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14 D. LI, Y. KE AND W. ZHANG

foranyl=0,1,2,---, 0 <3 <1—ms.

Proof. The proof of (C.12) is similar to the proof of (C.3) in Lemma C.1.
The major difference is the way of dealing with IL,,;. Because of the stronger
moment condition in (A.2), we may directly use a different exponential in-
equality (Lemma 2.2.11 in van der Vaart and Wellner, 1996) and do not need
to apply the truncation method. By replacing &, by &,(73) = (%)73/2’
we may re-define r = o(gn(rg)hQ) and thus \N,, = O(r‘l), where 7 is the
radius used in the finite covering technique (c.f., the proof of Lemma C.1).

Note that there exists a positive constant M5 such that

m M.
(C.13) E[|Zij(u,1)|™] < 2—;’m!(fr1)“"b—2
for all m > 2, by using the moment condition (A.2). Then, by (C.132 and
Lemma 2.2.11 in van der Vaart and Wellner (1996) with M = h™" and
v; = M5/h, we can show that for any ¢ > 0

2,22
(C.14) P(ILuy > e€n(73)) < 2dnN; eXp{QnM5/l?Jf2£ge(gngs)/h}
2 —1\73
< N, { - f(k’ggTh)(nh)ug}
5
2573 T3
= 2Ny exp {(nh)™ — 6613(%("“143}

= o(1)

as 1 — 73 > 7. The remaining proof is the same as that in the proof of
Lemma C.1. Hence details are omitted here to save space. O

Proof of (B.22). To simplify the presentation, we let
Tjn = Vn(oAO - -'Z(n7 h(BO - En))

and
VU, Us) = Vo (Ao — Ay + 72Uy, 1(Bo — By) + 7ils).

Note that
Z,(1) = EZ(A() + Uy, Bo + ’Y:Z/{Q/h) - E%(Ao, BU) =7,(1,1) + Z,,(1,2)

where

Z.(1,1) = VU, Us)Ln( A, By),

In(172) = %[ﬁ(ulaUZ)ﬁn(Xna gn)]jn(ubbé) _ﬁqgﬁn(ﬁna gn)ﬁn]
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MODEL SELECTION IN GSVCM 15

By Taylor’s expansion, we have
Z,(1,1) = V:LV};(UD Z/lz)/:n(jn, gn)
= Vp U, Us)Lo( Ao, Bo) — 4V (Un, Us)Lin(Ag, Bo) Vi +
o ((7)?) - (It |I* + |[ta]),

where V,, (U1, Us) is defined in Section 2.2 of the main document. On the
other hand, by some elementary calculations, we also have

Lrsr
To(1,2) = 5[ Vh U Ue) En( A, Ba)Va (U, Us) = Vi £u( Ay Ba) Vo (Us,Ue) | +

1|: (ATL?B ) (u17u2) ﬁﬁn(jn,gn)ﬁn}

= VT, o) (R, BVt 1) +

VH“TL (A, BV (Uh, Us)

= ;('Yn) VT(ul, Z/{2) (An,B ) (uh u2)+
’YnAT»C (An,B ) (ul? UQ)
- ;(Py'n) VT(Z/{h Z/{Q) (AnaB ) (ulv u2)+

VVE U, Us) L (Ao, Bo)Va + 0p (v2)?) - ([t ||? + [[Uo][?).

We can easily prove (B.22) by using the above two results on the asymptotic
expansion for Z,,(1,1) and Z,(1,2). O

Proof (B.23). Recall that
(C.15) To(4) = vVE (UL, Us) Ly (Ao, Bo).

By Taylor’s expansion for ¢; (-, -) and Assumption 4, when |U; — Uy| = O(h),
we have

dn

Q1{ > a;(Uk) + a;(Uk) (Ui — Up) 2y, yl}
=1

= Q1{ i: [aj(Uk) 4 a;(Ux) (Ui — Ug) | 245, yz}
j=1

Sn2

— [Za] i) i, yz} + Op(sn2h?)
(C.16) = Qi1 + Op(sn2h®),
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16 D. LI, Y. KE AND W. ZHANG

which implies that

T.(4) = %ZZQilX;rul(k)Kh(Ui—Uk)—i—

k=1 i=1
« N n Uz U
% ZZQilX;FUQ(k)< . k>Kh(Ui —Uk) +
k=1 i=1
(C.17) Op(yisin'2h?) - (th ]| + |the])).

Note that (U;, Xi,vy;), ¢ = 1,--- ,n, are independent and identically dis-
tributed. By Assumptions 1, 2(i) and 3 in Appendix A, and the Cauchy-
Schwarz inequality, we have

E [% Z Z Qi1 X w1 (k) K (U; — Uk)} i

k=1 1i=1

E[f: Qi XTuy (k) K, (Ui — Uk)]

s 2

(VA

5
k=1
S e[ onstmmon -] )

n n

_ ;; 1E{ [ 2 Wl () X, XTwy (k) K2(U; — U) ’Uk]}
= O(sn2h™") - 4]

Similarly, we can also show that

£y D3 QaXFualh) (7 ) Kt~ )] = Olona™) - et

, h
k=11i=1
Noting that s,2h? o< (nh)~1/2, we have
(C.18) Zo(4) = Op((1)*n'?) - (ILh ] + tke])),
which completes the proof of (B.23). O

Proof (B.38). Let

. . . T
['n(-A,B‘a]) - |:£7’L1(a17b17j)7' o 7£’rm(an7bn7j>} )
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MODEL SELECTION IN GSVCM 17

where ﬁnk(ak, by, 7) is the j-th element of Lok (ag, bg) defined in Section 2.2
of the main document; and let

£n(A, Blay) = diag {ﬁnl(al,bbj), . ,im(an,bn,j)} ,

where ﬁnk(ak,bk,j) is the j-th row of Enk(ak,bk) defined in Section 2.2.
Observe that
(C.19)

£2(A, Blog) = Ln( A, Bulog)+ Lo (A, Baloy) [vn(A, hB) — vn(ftn,hén)} .

By Taylor’s expansion of ¢;(+,-) and Proposition 3.1, and following the
argument in the proof of (B.22) above, we have

Lo(Au,Bale) = La( Ao, Boles) + £a( Ao, Boles) [Va(An, hBp) = Va(Ao, hBo)|
(C.20) +O0p(52502) - I,

where [, is an n X n identity matrix. Similarly, we may also show that

En(./zlvn, gn|a]) |:Vn(./4, hB) - Vn(jna hgn)]

= L(An, Bolog) [Va(A, hB) — Vi(Ag, hBo)] —
(C21)  En( Ao Boley) [ValAns hBp) = Vil Ao, hBo) | + Op(s2523) - In:

By (C.19)—(C.21), we may show that

LA, Blaj) = Ln(Ao, Bolaj) + Ln(An, Bule) [Va(A, hB) — Vi (Ao, hBo)]
(C.22) +0p(s2503) - I,.

By (B.5) and the standard argument in the kernel-based smoothing, we have

(C.23) max L (Ao, Bo|aj)H = Op(h_l/Q\/log h=1).
sn2+1<j<dn
By (A.5) in Assumption 6(ii) and (B.31), we may also show that
(C.24)
max || £n(An, Buloy) [Va( A, BB) — Va(Ao, hBo)]H = Op (K125
sn2+1§jgdn

when A = ZZO and B = EZO.
Using (C.22)—(C.24), we may complete the proof of (B.38). O
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