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In this supplemental material, we provide the detailed proofs of the main
results stated in Section 3 of the main document as well as some technical
lemmas which are useful in our proofs.

APPENDIX B: PROOFS OF THE MAIN RESULTS

In this appendix, we give the detailed proofs of the main theoretical results
developed in Section 3.

Proof of Proposition 3.1 (i). Recall that

ãk =
[
ã1(Uk), · · · , ãdn(Uk)

]T
, b̃k =

[ ˜̇a1(Uk), · · · , ˜̇adn(Uk)
]T
.

The basic idea used in the proof of this proposition is similar to that in
Bickel et al (2009) and Lian (2012). However, as the kernel-based smoothing
method is used, we need to derive the uniform convergence rates for the
kernel-based quantities, which makes the technical argument more compli-
cated than that in Bickel et al (2009) and Lian (2012).

We start with the proof that with probability approaching one, uniformly
for k = 1, · · · , n,

(B.1) max
{ dn∑
j=sn2+1

|djk|,
dn∑

j=sn1+1

|ḋjk|
}
≤ b
( sn2∑
j=1

|djk|+
sn1∑
j=1

|ḋjk|
)
,

where b = max{λ1/λ2, λ2/λ1}+ δ for any small δ > 0, where

djk = ãj(Uk)− aj(Uk) and ḋjk = h
[˜̇aj(Uk)− ȧj(Uk)]

for j = 1, · · · , dn and k = 1, · · · , n.

∗Correspondent author. Email: wenyang.zhang@york.ac.uk
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2 D. LI, Y. KE AND W. ZHANG

By the definitions of ãk and b̃k, we readily have

(B.2) Qnk(ãk, b̃k) ≥ Qnk
(
ak0,bk0

)
,

where ak0 and bk0 are defined in Section 2 of the main document. From
(B.2), we have

Lnk(ãk, b̃k)− Lnk
(
ak0,bk0

)
(B.3)

≥ λ1

[ dn∑
j=1

|ãj(Uk)| −
dn∑
j=1

|aj(Uk)|
]

+ λ2

[ dn∑
j=1

|˜̇aj(Uk)| − dn∑
j=1

|ȧj(Uk)|
]
.

By the concavity condition of `(·, ·) (c.f., Assumption 2(ii)), we may show
that

(B.4) Lnk(ãk, b̃k)− Lnk
(
ak0,bk0

)
≤ dTkL̇nk,

where

L̇nk =
1

n

n∑
i=1

q1
[ dn∑
j=1

aj(Uk) + ȧj(Uk)(Ui − Uk)xij , yi
]( Xi

Ui−Uk
h ·Xi

)
·

Kh(Ui − Uk)

and dk = (d1k, · · · , ddnk, ḋ1k, · · · , ḋdnk)T. By Lemma C.1 which is given in
Appendix C, we may show that

max
1≤j≤dn

sup
1≤k≤n

∣∣∣∣∣∣ 1n
n∑
i=1

q1
[ dn∑
j1=1

aj1(Ui)xij1 , yi
]
xijKh(Ui − Uk)

∣∣∣∣∣∣(B.5)

=OP

(√
log h−1

nh

)

and

max
1≤j≤dn

sup
1≤k≤n

∣∣∣∣∣∣ 1n
n∑
i=1

q1
[ dn∑
j1=1

aj1(Ui)xij1 , yi
]
xij
(Ui − Uk

h

)
Kh(Ui − Uk)

∣∣∣∣∣∣
(B.6)

=OP

(√
log h−1

nh

)
.
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MODEL SELECTION IN GSVCM 3

Then, by (B.5), (B.6), the standard calculation in kernel-based smoothing
and the argument in the proof of Lemma C.1, we may show that

(B.7) dTkL̇nk ≤ OP
(√ log h−1

nh
+ sn2h

2
)
·
( dn∑
j=1

|djk|+
dn∑
j=1

|ḋjk|
)

uniformly for k = 1, · · · , n.

On the other hand, by the triangle inequality, we may prove that

λ1

[ dn∑
j=1

|ãj(Uk)| −
dn∑
j=1

|aj(Uk)|
]

(B.8)

= λ1

sn2∑
j=1

(
|ãj(Uk)| − |aj(Uk)|

)
+ λ1

dn∑
j=sn2+1

|ãj(Uk)|

≥ −λ1
sn2∑
j=1

|djk|+ λ1

dn∑
j=sn2+1

|djk|.

Similarly, we also have

(B.9) λ2

[ dn∑
j=1

|˜̇aj(Uk)| − dn∑
j=1

|ȧj(Uk)|
]
≥ −λ2

sn1∑
j=1

|ḋjk|+ λ2

dn∑
j=sn1+1

|ḋjk|.

By (B.3), (B.4), (B.7)–(B.9) and the condition that
√

log h−1

nh + sn2h
2 =

o(λ1 + λ2) and λ1 ∝ λ2 (c.f., Assumption 5), we can complete the proof of
(B.1).

Let
u1 =

(
u11, · · · , u1dn

)T
and u2 =

(
u21, · · · , u2dn

)T
be two dn-dimensional column vectors and define

Ω(C0) =
{(

uT1 ,u
T
2

)T
: ‖u1‖2 = ‖u2‖2 = C0,

dn∑
j=1

(
|u1j |+ |u2j |

)
≤ 2(1 + b)

sn2∑
j=1

(
|u1j |+ |u2j |

)}
,

where C0 is a positive constant which could be sufficiently large. By the
concavity of `(·, ·), we only need to prove that there exists a local maximiser
(ãk, hb̃k) in the interior of

{
(ak0+γnu1, hbk0+γnu2) : (uT1 , uT2)T ∈ Ω(C0)

}
,

where γn =
√
sn2λ1.
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4 D. LI, Y. KE AND W. ZHANG

Observe that

(B.10) Qnk
[
ak0 + γnu1,bk0 + γnu2/h

]
−Qnk

(
ak0,bk0

)
=

3∑
l=1

Ink(l),

where

Ink(1) = Lnk
(
ak0 + γnu1,bk0 + γnu2/h

)
− Lnk

(
ak0,bk0

)
,

Ink(2) = −λ1
( dn∑
j=1

|aj(Uk) + γnu1j | −
dn∑
j=1

|aj(Uk)|
)
,

Ink(3) = −λ2
( dn∑
j=1

|hȧj(Uk) + γnu2j | −
dn∑
j=1

|hȧj(Uk)|
)
.

We first consider Ink(1). Letting u = (uT1 ,u
T
2)T and by the definition of

Lnk(·, ·) in Section 2, we have

(B.11) Ink(1)
P∼ γnuTL̇nk +

1

2
γ2nu

TL̈nk(a∗k,b∗k)u,

where an
P∼ bn denotes that an = bn(1 + oP (1)), (a∗k,b

∗
k) lies between

(
ak0 +

γnu1,bk0 + γnu2/h
)

and (ak0,bk0),

L̈nk(ak,bk) =

[
L̈nk(ak,bk, 0) L̈nk(ak,bk, 1)

L̈nk(ak,bk, 1) L̈nk(ak,bk, 2)

]
with

L̈nk(ak,bk, l) =
1

n

n∑
i=1

q2


dn∑
j=1

[
αjk + βjk(Ui − Uk)

]
xij , yi


(
Ui − Uk

h

)l
·

XiX
T
i Kh(Ui − Uk)

for l = 0, 1, 2, where ak =
(
α1k, · · · , αdnk

)T
and bk =

(
β1k, · · · , βdnk

)T
.

Note that for u ∈ Ω(C0),

(B.12)

dn∑
j=1

(|u1j |+ |u2j |) ≤ 2(1 + b)

sn2∑
j=1

(|u1j |+ |u2j |).

Using Lemma C.1 in Appendix C, the Cauchy-Schwarz inequality and (B.12),
we can show that uniformly for k = 1, · · · , n,

(B.13) γnu
TL̇nk = oP (γ2n) · ‖u‖.
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MODEL SELECTION IN GSVCM 5

On the other hand, note that

1

2
γ2nu

TL̈nk(a∗k,b∗k)u(B.14)

=
1

2
γ2nu

T
[
L̈nk(a∗k,b∗k)− L̈n(Uk)

]
u +

1

2
γ2nu

TL̈n(Uk)u,

where L̈n(Uk) is defined at the beginning of Appendix A. By Assumption
2(iii), we readily have

(B.15)
1

2
γ2nu

TL̈n(Uk)u ≤ −
1

2
ρ1γ

2
n‖u‖2 < 0

uniformly for k = 1, · · · , n. By (B.12), Assumptions 2(ii), the condition
s2n2λ1 = o(1) in Assumption 5 and following the proof of Lemma C.1, we
may prove that uniformly for k = 1, · · · , n,

γ2nu
T
[
L̈nk(a∗k,b∗k)− L̈n(Uk)

]
u(B.16)

= OP

(
γ3n

[ dn∑
j=1

(|u1j |+ |u2j |)
]3)

= OP

(
γ3n

[ sn2∑
j=1

(|u1j |+ |u2j |)
]3)

= OP
(
γ3ns

3/2
n2 ‖u‖

3
)

= oP (γ2n) ·
(
‖u‖2

)
.

Hence, by (B.11) and (B.13)–(B.16), when n is sufficiently large and C0 is
large enough, we have

(B.17) Ink(1)
P∼ 1

2
γ2nu

TL̈nk(Uk)u.

We next consider Ink(2) and Ink(3). It is easy to show that

Ink(2) = −λ1
[ dn∑
j=1

|aj(Uk) + γnu1j | −
dn∑
j=1

|aj(Uk)|
]

(B.18)

≤ λ1

sn2∑
j=1

[
|aj(Uk)| − |aj(Uk) + γnu1j |

]
− λ1

dn∑
j=sn2+1

|γnu1j |

= OP (γ2n) · ‖u1‖ − λ1
dn∑

j=sn2+1

|γnu1j |.

Similarly, noting that λ1 ∝ λ2 we also have

(B.19) Ink(3) = OP (γ2n) · ‖u2‖ − λ2
dn∑

j=sn1+1

|γnu2j |.
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6 D. LI, Y. KE AND W. ZHANG

Hence, by (B.10) and (B.17)–(B.19), we can prove that the leading term of
Ink(1)+Ink(2)+Ink(3) is negative in probability uniformly in k by choosing
sufficiently large C0. Hence, we may find a local maximiser (ãk, hb̃k) in the
interior of

{
(ak0+γnu1, hbk0+γnu2) : (uT1 , uT2)T ∈ Ω(C0)

}
, which completes

the proof of Proposition 3.1(i). 2

Proof of Proposition 3.1 (ii). The proof is similar to that in the proof
of Proposition 3.1(i) with the role of Lemma C.1 replaced by Lemma C.2
(given in Appendix C). 2

Proof of Theorem 3.1. We start with the proof of the convergence rates

for the biased oracle estimators Abon and Bbon . According to the definition, we
have

(B.20)
(
Abon ,B

bo
n

)
= arg maxQ2

n(Ao, Bo),

where Ao and Bo are defined as in Section 3. Recall that A0 and B0 are the
vectors of the true functional coefficients and their derivative functions, and
denote

U1 =
[
uT1(1), · · · ,uT1(n)

]T
, U2 =

[
uT2(1), · · · ,uT2(n)

]T
,

where both u1(k) and u2(k) are dn-dimensional column vectors, k = 1, · · · , n,
the last dn − sn2 elements of u1(k) and the last dn − sn1 elements of u2(k)
are zeroes. Define

Ω∗n(C∗) =
{

(UT1 , UT2 )T : ‖U1‖2 = ‖U2‖2 = nC∗
}
,

where C∗ is a positive constant which can be sufficiently large.

For (UT1 , UT2 )T ∈ Ω∗n(C∗), observe that

(B.21) Q2
n

(
A0 +γ∗nU1,B0 +γ∗nU2/h

)
−Q2

n(A0,B0) = In(1) +In(2) +In(3),

where γ∗n =
√
sn2/nh,

In(1) = L�n
(
A0 + γ∗nU1,B0 + γ∗nU2/h

)
− L�n(A0,B0),

In(2) =

dn∑
j=1

ṗλ4(‖α̃j‖)‖αj0‖ −
dn∑
j=1

ṗλ4(‖α̃j‖)‖αj0 + γ∗nu1j‖,

In(3) =

dn∑
j=1

ṗλ∗4(D̃j)‖hβj0‖ −
dn∑
j=1

ṗλ∗4(D̃j)‖hβj0 + γ∗nu2j‖,
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MODEL SELECTION IN GSVCM 7

in which αj0 =
[
aj(U1), · · · , aj(Un)

]T
, βj0 =

[
ȧj(U1), · · · , ȧj(Un)

]T
, u1j =[

u1j(1), · · · , u1j(n)
]T

, u2j =
[
u2j(1), · · · , u2j(n)

]T
, u1j(k) and u2j(k) are the

j-th component of vectors u1(k) and u2(k), respectively.

For In(1), by the definition of L�n(·, ·) in Section 2, we have

(B.22) In(1) = In(4) + In(5) + oP
(
(γ∗n)2

)
·
(
‖U1‖2 + ‖U2‖2

)
,

where

In(4) = γ∗nVTn(U1,U2)L̇n(A0,B0),

In(5) =
1

2
(γ∗n)2VTn(U1,U2)L̈n(Ãn, B̃n)Vn(U1,U2).

The detailed proof of (B.22) will be provided in Appendix C below. By some
elementary but tedious calculations, we can show that

(B.23) In(4) = OP
(
(γ∗n)2n1/2

)
·
(
‖U‖+ ‖V‖

)
.

The detailed proof of (B.23) will be also given in Appendix C below. For
In(5), note that

In(5) =
1

2
(γ∗n)2VTn(U1,U2)

[
L̈n(Ãn, B̃n)− L̈n(A0,B0)

]
Vn(U1,U2) +

1

2
(γ∗n)2VTn(U1,U2)L̈n(A0,B0)Vn(U1,U2)

≡ In(6) + In(7).(B.24)

By Assumption 2(iii) and the definitions of U1 and U2, we may show that

(B.25) In(7) ≤ −1

2
ρ1(γ

∗
n)2
(
‖U1‖2 + ‖U2‖2

)
< 0.

By Assumption 2(ii) and using Proposition 3.1, we can prove that

(B.26) In(6) = oP
(
(γ∗n)2

)
·
(
‖U1‖2 + ‖U2‖2

)
,

which, together with (B.22)–(B.25), implies that In(7) is the leading term
of In(1). Hence, when n is sufficiently large, by taking C∗ large enough, we
have

(B.27) In(1)
P∼ 1

2
(γ∗n)2VTn(U1,U2)L̈n(A0,B0)Vn(U1,U2).
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8 D. LI, Y. KE AND W. ZHANG

We next consider In(2). Noting that u1j = 0 for j = sn2+1, · · · , dn, we
have

In(2) =

dn∑
j=1

ṗλ4(‖α̃j‖)‖αj0‖ −
dn∑
j=1

ṗλ4(‖α̃j‖)‖αj0 + γ∗nu1j‖

=

sn2∑
j=1

ṗλ4(‖α̃j‖)
(
‖αj0‖ − ‖αj0 + γ∗nu1j‖

)
.

By Proposition 3.1 and (A.4) in Assumption 6, we may show that with
probability approaching one,

min
1≤j≤sn2

‖α̃j‖ >
1

2
b�n

1/2,

which together with the condition of λ4 = o(n1/2) and the SCAD structure,
implies that

(B.28) In(2) = oP
(
(γ∗n)2

)
· ‖U1‖2.

Similarly, we may also show that

(B.29) In(3) = oP
(
(γ∗n)2

)
· ‖U2‖2,

by noting that

min
1≤j≤sn1

D̃j >
1

2
b�n

1/2.

Hence, by (B.21) and (B.27)–(B.29), we can prove that the leading term
of In(1) + In(2) + In(3) is negative in probability, which indicates that for
any ε > 0, there exists a sufficiently large C∗ > 0 such that

(B.30) P
{

sup
(U1,U2)∈Ω∗

n(C∗)
Q2
n

(
A0+γ

∗
nU1,B0+γ∗nU2/h

)
< Q2

n(A0,B0)
}
≥ 1−ε

for large n. Therefore, we may show that

(B.31)
1

n

∥∥Abon −A0

∥∥2 =
sn2
nh

,
1

n

∥∥Bbon − B0∥∥2 =
sn2
nh3

,

which is (3.2) in Theorem 3.1.

We next complete the proof of Theorem 3.1. Define

(B.32) Mα =
(
αj : 1 ≤ j ≤ sn2

)
and Mβ =

(
hβj : 1 ≤ j ≤ sn1

)
,
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MODEL SELECTION IN GSVCM 9

which correspond the non-zero components in A0 and B0, respectively. Let
L̇�n(A,B|Mα), L̇�n(A,B|Mβ), L̇�n(A,B|αj) and L̇�n(A,B|hβj) be the gradi-

ent vectors of L�n(A,B) with respect toMα,Mβ, αj and hβj , respectively.
Define the sub-gradient of the penalty terms as

P(Mα) =

[
ṗλ4(‖α̃1‖)

α11

‖α1‖
, · · · , ṗλ4(‖α̃sn2‖)

αsn21

‖αsn2‖
, · · · ,

ṗλ4(‖α̃1‖)
α1n

‖α1‖
, · · · , ṗλ4(‖α̃sn2‖)

αsn2n

‖αsn2‖

]T
,

P(Mβ) =

[
ṗλ4(D̃1)

β11
‖β1‖

, · · · , ṗλ4(D̃sn1)
βsn11

‖βsn1
‖
, · · · ,

ṗλ4(D̃1)
β1n
‖β1‖

, · · · , ṗλ4(D̃sn1)
βsn1n

‖βsn1
‖

]T
.

Following the proof of Theorem 1 in Fan et al (2014) (see also the proof
of Theorem 1 in Fan and Lv, 2011), the objective function Q2

n(A,B) has a

unique maximiser
(
Abon ,B

bo
n

)
if

L̇�n(A,B|Mα)− P(Mα) = 0nsn2 ,(B.33)

L̇�n(A,B|Mβ)− P(Mβ) = 0nsn1 ,(B.34)

max
sn2+1≤j≤dn

‖L̇�n(A,B|αj)‖ < min
sn2+1≤j≤dn

ṗλ4(‖α̃j‖),(B.35)

max
sn1+1≤j≤dn

‖L̇�n(A,B|hβj)‖ < min
sn1+1≤j≤dn

ṗλ∗4(D̃j)(B.36)

hold at A = Abon and B = Bbon . Hence, we next only need to prove (B.33)–
(B.36).

By the definition of the biased oracle estimators Abon and Bbon , it is easy to
verify (B.33) and (B.34). We next only show the proof of (B.35) as the proof
of (B.36) is analogous. By Proposition 3.1 and the condition of (nsn2)

1/2λ1 =
o(λ4), we may show that

min
sn2+1≤j≤dn

ṗλ4(‖α̃j‖) = λ4(B.37)

with probability approaching one. On the other hand, for the left hand side
of (B.35), we can prove that
(B.38)

max
sn2+1≤j≤dn

‖L̇�n(A,B|αj)‖ = OP
(
h−1/2

[
(log h−1)1/2 + s

1/2
n2 + (nh)1/2s2n2λ

2
1

])
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10 D. LI, Y. KE AND W. ZHANG

when A = Abon and B = Bbon . The detailed proof of (B.38) will be given in
Appendix C below. Using (B.37), (B.38) and (A.3) in Assumption 6, we may
prove (B.35). Then, the proof of Theorem 3.1 is completed. 2

Proof of Theorem 3.2. The proof is similar to the proof of Theorem
2 in Wang and Xia (2009) with some modifications. Recall that aboj (Uk),
j = 1, · · · , sn2, k = 1, · · · , n, are the biased oracle estimators of aj(Uk)
which are obtained by maximising the objective function Q2

n(Ao, Bo).
Let

D
o
n =

(
max
1≤k≤n

∣∣abo1 (Uk)− auo1 (Uk)
∣∣, · · · , max

1≤k≤n

∣∣abosn1
(Uk)− auosn1

(Uk)
∣∣)T,

and

C
bo
n =

(
cbosn1+1, · · · , cbosn2

)T
, where cboj =

1

n

n∑
k=1

aboj (Uk), j = sn1 + 1, · · · , sn2.

By Theorem 3.1, in order to prove (3.3) and (3.4), we only need to show
that

(B.39)
√
nhBT

nD
o
n = oP (1),

√
nAT

n

(
C
bo
n −Cuo

n

)
= oP (1).

For k = 1, · · · , n, denote

auo(Uk) =
[
auo1 (Uk), · · · , auosn2

(Uk), 0, · · · , 0
]T
,

abo(Uk) =
[
abo1 (Uk), · · · , abosn2

(Uk), 0, · · · , 0
]T
,

where the last dn − sn2 elements in the above two vectors are zeros, and let

buo(Uk) and b
bo

(Uk) be defined analogously. Then, using the first-order con-
dition, we may show that the unbiased oracle estimates satisfy the following
equation:

(B.40) 0sn2 = Rsn2L̇nk
(
ãk, b̃k

)
+Rsn2L̈nk

(
ãk, b̃k

) [ auo(Uk)− ãk
hbuo(Uk)− hb̃k

]
uniformly for 1 ≤ k ≤ n, where Rsn2 =

[
Isn2 , Nsn2×(2dn−sn2)

]
with Is being

an s× s identity matrix and Nr×s being a r × s null matrix.

Following the proof of Theorem 3.1, we can also show that the biased
oracle estimates satisfy the following equation:
(B.41)

0sn2 = Rsn2L̇nk
(
ãk, b̃k

)
+Rsn2L̈nk

(
ãk, b̃k

) [ abo(Uk)− ãk

hb
bo

(Uk)− hb̃k

]
− P∗(Uk)
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MODEL SELECTION IN GSVCM 11

uniformly for 1 ≤ k ≤ n, where

P∗(Uk) =
[
ṗλ4(‖α̃1‖)

abo1 (Uk)

‖αbo
1 ‖

, · · · , ṗλ4(‖α̃sn2‖)
abosn2

(Uk)

‖αbo
sn2
‖

]T
,

αbo
j =

[
aboj (U1), · · · , aboj (Un)

]T
. By Proposition 3.1 and (A.4) in Assumption

6, we may show that

min
1≤j≤sn2

‖α̃j‖ ≥ min
1≤j≤sn2

‖αj0‖ − max
1≤j≤sn2

‖α̃j −αj0‖ ≥
1

2
b�
√
n

with probability approaching one, which together with the SCAD structure,
indicates that the penalty term P∗(Uk) in (B.41) can be asymptotically ig-
nored. Then, by (B.40), (B.41) and the standard argument, we may complete
the proof of (B.39). 2

APPENDIX C: PROOFS OF SOME TECHNICAL LEMMAS

Define

(C.1) Zij(u, l) = Qi1xij
(Ui − u

h

)l
Kh(Ui − u), u ∈ [0, 1]

for i = 1, . . . , n, j = 1, . . . , dn, l = 0, 1, 2, · · · , where

Qi1 = q1
[ dn∑
j1=1

aj1(Ui)xij1 , yi
]
.

Under different moment conditions on the random element Qi1xij , in Lem-
mas C.1 and C.2 below, we give the uniform consistency results of the non-
parametric kernel-based estimators in the ultra-high dimensional case, which
are of independent interest. Analogous uniform consistency results also hold
whenQi1xij in (C.1) is replaced byQi2xijxik orM(Xi, Ui, yi)xijxikxil, where
Qi2 and M(Xi, Ui, yi) are defined in Appendix A of the main document.

Lemma C.1. Suppose that Assumptions 1 and 3 in Appendix A are sat-
isfied. Moreover, suppose that the dimension dn ∝ nτ1 with 0 ≤ τ1 < ∞,
E
(
Qi1
∣∣Xi, Ui

)
= 0 a.s., the moment condition (A.1) in Appendix A holds

for some m0 > 2, and

(C.2) h ∝ n−δ1 with 0 < δ1 < 1,
nh

(ndn)2/m0 log h−1
→∞.
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12 D. LI, Y. KE AND W. ZHANG

Then we have, as n→∞,

(C.3) max
1≤j≤dn

sup
u∈[0,1]

∣∣∣ 1
n

n∑
i=1

Zij(u, l)
∣∣∣ = OP

(( log h−1

nh

)1/2)
for any l = 0, 1, 2, · · · .

Proof. For simplicity, let ξn =
( log h−1

nh

)1/2
. The main idea of proving (C.3)

is to consider covering the interval [0, 1] by a finite number of subsets U(k)
which are centered at uk with radius rn = ξnh

2. Letting Nn be the total
number of such subsets U(k), Nn = O(r−1n ). It is easy to show that

max
1≤j≤dn

sup
u∈[0,1]

∣∣∣ 1
n

n∑
i=1

Zij(u, l)
∣∣∣(C.4)

≤ max
1≤j≤dn

max
1≤k≤Nn

∣∣∣ 1
n

n∑
i=1

Zij(uk, l)
∣∣∣+

max
1≤j≤dn

max
1≤k≤Nn

sup
u∈U(k)

∣∣∣ 1
n

n∑
i=1

Zij(u, l)−
1

n

n∑
i=1

Zij(uk, l)
∣∣∣

≡ Πn1 + Πn2.

By the continuity condition on K(·) in Assumption 1 and using the definition
of rn, we readily have

(C.5) Πn2 = OP
(rn
h2
)

= OP (ξn).

For Πn1, we apply the truncation technique and the Bernstein inequality
for i.i.d. random variables (c.f., Lemma 2.2.9 in van der Vaart and Wellner,
1996) to obtain the convergence rate. Let Mn = M2(ndn)1/m0 ,

Zij(u, l) =Zij(u, l)I
{∣∣Qi1xij∣∣ ≤Mn

}
,

Z̃ij(u, l) =Zij(u, l)− Zij(u, l),

where I{·} is an indicator function and M2 is some positive constant. Hence
we have

Πn1 ≤ max
1≤j≤dn

max
1≤k≤Nn

∣∣∣ 1
n

n∑
i=1

{
Zij(uk, l)− E[Zij(uk, l)]

}∣∣∣+(C.6)

max
1≤j≤dn

max
1≤k≤Nn

∣∣∣ 1
n

n∑
i=1

{
Z̃ij(uk, l)− E[Z̃ij(uk, l)]

}∣∣∣
≡ Πn3 + Πn4.
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Note that for M3 > 0 and any ε > 0, by (A.1), (C.2) and the Markov
inequality,

P (Πn4 > M3ξn) ≤
dn∑
j=1

n∑
i=1

P
(∣∣Qi1xij∣∣ > Mn

)
≤ M−m0

2 E
[∣∣Qi1xij∣∣m0

]
< ε,

if we choose M2 > E
[∣∣Qi1xij∣∣m0

]1/m0ε−1/m0 . Then, by letting ε be arbitrarily
small, we can show that

(C.7) Πn4 = OP (ξn).

Note that

(C.8)
∣∣Zij(uk, l)− E[Zij(uk, l)]

∣∣ ≤ M4Mn

h

and

(C.9) Var
[
Zij(uk, l)

]
≤ M4

h

for some M4 > 0. By (C.2), (C.7), (C.8) and Lemma 2.2.9 in van der Vaart
and Wellner (1996), we have

P(Πn3 > M3ξn) ≤ 2dnNn exp
{ −n2M2

3 ξ
2
n

2nM4/h+ 2M4M3nξnMn/(3h)

}
(C.10)

≤ 2dnNn exp
{
−M3 log h−1

}
= o(1),

where M3 is chosen such that

M3 > 3M4, dnNn exp
{
−M3 log h−1

}
= o(1),

which are possible as dn is diverging with a polynomial rate. Hence we have

(C.11) Πn3 = OP (ξn).

In view of (C.4)–(C.7) and (C.11), we have shown (C.3), completing the
proof of Lemma C.1. 2

Lemma C.2. Suppose that Assumptions 1 and 3 in Appendix A are satisfied.
Moreover, suppose that the dimension dn ∝ exp{(nh)τ2} with 0 ≤ τ2 < 1,
E
(
Qi1
∣∣Xi, Ui

)
= 0 a.s., the moment condition (A.2) in Appendix A holds for

all m ≥ 2, and h ∝ n−δ1 with 0 < δ1 < 1. Then we have, as n→∞,

(C.12) max
1≤j≤dn

sup
u∈[0,1]

∣∣∣ 1
n

n∑
i=1

Zij(u, l)
∣∣∣ = oP

(( log h−1

nh

)τ3/2)
imsart-aos ver. 2014/10/16 file: SUPP.tex date: June 16, 2015
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for any l = 0, 1, 2, · · · , 0 < τ3 < 1− τ2.

Proof. The proof of (C.12) is similar to the proof of (C.3) in Lemma C.1.
The major difference is the way of dealing with Πn1. Because of the stronger
moment condition in (A.2), we may directly use a different exponential in-
equality (Lemma 2.2.11 in van der Vaart and Wellner, 1996) and do not need

to apply the truncation method. By replacing ξn by ξn(τ3) ≡
( log h−1

nh

)τ3/2,
we may re-define r = o

(
ξn(τ3)h

2
)

and thus Nn = O
(
r−1
)
, where r is the

radius used in the finite covering technique (c.f., the proof of Lemma C.1).

Note that there exists a positive constant M5 such that

(C.13) E
[∣∣Zij(u, l)∣∣m] ≤ M5

2h
m!(h−1)m−2

for all m ≥ 2, by using the moment condition (A.2). Then, by (C.13) and
Lemma 2.2.11 in van der Vaart and Wellner (1996) with M = h−1 and
vi = M5/h, we can show that for any ε > 0

P
(
Πn1 > εξn(τ3)

)
≤ 2dnNn exp

{ −n2ε2ξ2n(τ3)

2nM5/h+ 2nεξn(τ3)/h

}
(C.14)

≤ 2dnNn exp
{
− ε2(log h−1)τ3

3M5
(nh)1−τ3

}
= 2Nn exp

{
(nh)τ2 − ε2δτ31 (log n)τ3

3M5
(nh)1−τ3

}
= o(1)

as 1 − τ3 > τ2. The remaining proof is the same as that in the proof of
Lemma C.1. Hence details are omitted here to save space. 2

Proof of (B.22). To simplify the presentation, we let

Ṽn = Vn
(
A0 − Ãn, h(B0 − B̃n)

)
and

Ṽn(U1,U2) = Vn
(
A0 − Ãn + γ∗nU1, h(B0 − B̃n) + γ∗nU2

)
.

Note that

In(1) = L�n
(
A0 + γ∗nU1,B0 + γ∗nU2/h

)
− L�n

(
A0,B0

)
≡ In(1, 1) + In(1, 2)

where

In(1, 1) = γ∗nVTn(U1, U2)L̇n(Ãn, B̃n),

In(1, 2) =
1

2

[
ṼTn
(
U1,U2

)
L̈n(Ãn, B̃n)Ṽn

(
U1,U2

)
− ṼTnL̈n(Ãn, B̃n)Ṽn

]
.
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By Taylor’s expansion, we have

In(1, 1) = γ∗nVTn(U1, U2)L̇n(Ãn, B̃n)

= γ∗nVTn(U1, U2)L̇n(A0,B0)− γ∗nVTn(U1, U2)L̈n(A0,B0)Ṽn +

oP
(
(γ∗n)2

)
·
(
‖U1‖2 + ‖U2‖2

)
,

where Vn(U1, U2) is defined in Section 2.2 of the main document. On the
other hand, by some elementary calculations, we also have

In(1, 2) =
1

2

[
ṼTn
(
U1,U2

)
L̈n(Ãn, B̃n)Ṽn

(
U1,U2

)
− ṼTn L̈n(Ãn, B̃n)Ṽn

(
U1,U2

)]
+

1

2

[
ṼTn L̈n(Ãn, B̃n)Ṽn

(
U1,U2

)
− ṼTn L̈n(Ãn, B̃n)Ṽn

]
=

γ∗n
2
VTn(U1, U2)L̈n(Ãn, B̃n)Ṽn

(
U1,U2

)
+

γ∗n
2
ṼTn L̈n(Ãn, B̃n)Vn(U1, U2)

=
1

2
(γ∗n)2VTn(U1, U2)L̈n(Ãn, B̃n)Vn(U1, U2) +

γ∗nṼTn L̈n(Ãn, B̃n)Vn(U1, U2)

=
1

2
(γ∗n)2VTn(U1, U2)L̈n(Ãn, B̃n)Vn(U1, U2) +

γ∗nVTn(U1, U2)L̈n(A0,B0)Ṽn + oP
(
(γ∗n)2

)
·
(
‖U1‖2 + ‖U2‖2

)
.

We can easily prove (B.22) by using the above two results on the asymptotic
expansion for In(1, 1) and In(1, 2). 2

Proof (B.23). Recall that

(C.15) In(4) = γ∗nVTn(U1,U2)L̇n(A0,B0).

By Taylor’s expansion for q1(·, ·) and Assumption 4, when |Ui−Uk| = O(h),
we have

q1

{ dn∑
j=1

[
aj(Uk) + ȧj(Uk)(Ui − Uk)

]
xij , yi

}
= q1

{ sn2∑
j=1

[
aj(Uk) + ȧj(Uk)(Ui − Uk)

]
xij , yi

}
= q1

[ sn2∑
j=1

aj(Ui)xij , yi

]
+OP (sn2h

2)

≡ Qi1 +OP (sn2h
2),(C.16)
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which implies that

In(4) =
γ∗n
n

n∑
k=1

n∑
i=1

Qi1X
T
i u1(k)Kh(Ui − Uk) +

γ∗n
n

n∑
k=1

n∑
i=1

Qi1X
T
i u2(k)

(Ui − Uk
h

)
Kh(Ui − Uk) +

OP (γ∗ns
3/2
n2 n

1/2h2) ·
(
‖U1‖+ ‖U2‖

)
.(C.17)

Note that (Ui, Xi, yi), i = 1, · · · , n, are independent and identically dis-
tributed. By Assumptions 1, 2(i) and 3 in Appendix A, and the Cauchy-
Schwarz inequality, we have

E
[ 1

n

n∑
k=1

n∑
i=1

Qi1X
T
i u1(k)Kh(Ui − Uk)

]2
≤ 1

n

n∑
k=1

E
[ n∑
i=1

Qi1X
T
i u1(k)Kh(Ui − Uk)

]2
=

1

n

n∑
k=1

E
(
E
{[ n∑

i=1

Qi1X
T
i u1(k)Kh(Ui − Uk)

]2∣∣∣Uk})
=

1

n

n∑
k=1

n∑
i=1

E
{
E
[
Q2
i1u

T
1(k)XiX

T
i u1(k)K2

h(Ui − Uk)
∣∣∣Uk]}

= O(sn2h
−1) · ‖U1‖2.

Similarly, we can also show that

E
[ 1

n

n∑
k=1

n∑
i=1

Qi1X
T
i u2(k)

(Ui − Uk
h

)
Kh(Ui − Uk)

]2
= O(sn2h

−1) · ‖U2‖2.

Noting that sn2h
2 ∝ (nh)−1/2, we have

(C.18) In(4) = OP
(
(γ∗n)2n1/2

)
·
(
‖U1‖+ ‖U2‖

)
,

which completes the proof of (B.23). 2

Proof (B.38). Let

L̇n(A,B|αj) =
[
L̇n1(a1,b1, j), · · · , L̇nn(an,bn, j)

]T
,
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where L̇nk(ak,bk, j) is the j-th element of L̇nk(ak,bk) defined in Section 2.2
of the main document; and let

L̈n(A,B|αj) = diag
{
L̈n1(a1,b1, j), · · · , L̈nn(an,bn, j)

}
,

where L̈nk(ak,bk, j) is the j-th row of L̈nk(ak,bk) defined in Section 2.2.
Observe that
(C.19)

L̇�n(A,B|αj) = L̇n(Ãn, B̃n|αj)+L̈n(Ãn, B̃n|αj)
[
Vn(A, hB)− Vn(Ãn, hB̃n)

]
.

By Taylor’s expansion of q1(·, ·) and Proposition 3.1, and following the
argument in the proof of (B.22) above, we have

L̇n(Ãn, B̃n|αj) = L̇n(A0,B0|αj) + L̈n(A0,B0|αj)
[
Vn(Ãn, hB̃n)− Vn(A0, hB0)

]
+OP (s2n2λ

2
1) · In,(C.20)

where In is an n× n identity matrix. Similarly, we may also show that

L̈n(Ãn, B̃n|αj)
[
Vn(A, hB)− Vn(Ãn, hB̃n)

]
= L̈n(Ãn, B̃n|αj) [Vn(A, hB)− Vn(A0, hB0)]−

L̈n(A0,B0|αj)
[
Vn(Ãn, hB̃n)− Vn(A0, hB0)

]
+OP (s2n2λ

2
1) · In.(C.21)

By (C.19)–(C.21), we may show that

L̇�n(A,B|αj) = L̇n(A0,B0|αj) + L̈n(Ãn, B̃n|αj) [Vn(A, hB)− Vn(A0, hB0)]
+OP (s2n2λ

2
1) · In.(C.22)

By (B.5) and the standard argument in the kernel-based smoothing, we have

(C.23) max
sn2+1≤j≤dn

∥∥∥L̇n(A0,B0|αj)
∥∥∥ = OP

(
h−1/2

√
log h−1

)
.

By (A.5) in Assumption 6(ii) and (B.31), we may also show that
(C.24)

max
sn2+1≤j≤dn

∥∥∥L̈n(Ãn, B̃n|αj) [Vn(A, hB)− Vn(A0, hB0)]
∥∥∥ = OP

(
h−1/2s

1/2
n2

)
when A = Abon and B = Bbon .

Using (C.22)–(C.24), we may complete the proof of (B.38). 2
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