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STRUCTURE IDENTIFICATION IN PANEL DATA ANALYSIS1

BY YUAN KE, JIALIANG LI AND WENYANG ZHANG

Princeton University, National University of Singapore and University of York

Panel data analysis is an important topic in statistics and econometrics.
In such analysis, it is very common to assume the impact of a covariate on
the response variable remains constant across all individuals. While the mod-
elling based on this assumption is reasonable when only the global effect is
of interest, in general, it may overlook some individual/subgroup attributes
of the true covariate impact. In this paper, we propose a data driven approach
to identify the groups in panel data with interactive effects induced by latent
variables. It is assumed that the impact of a covariate is the same within each
group, but different between the groups. An EM based algorithm is proposed
to estimate the unknown parameters, and a binary segmentation based algo-
rithm is proposed to detect the grouping. We then establish asymptotic theo-
ries to justify the proposed estimation, grouping method, and the modelling
idea. Simulation studies are also conducted to compare the proposed method
with the existing approaches, and the results obtained favour our method.
Finally, the proposed method is applied to analyse a data set about income
dynamics, which leads to some interesting findings.

1. Introduction. Panel data analysis is an important topic in statistics and
econometrics [Hsiao (2003), Ahn and Schmidt (1995), Arellano (2003), Baltagi
(2005)]. Let yit , i = 1, . . . , n, t = 1, . . . , T , be a one-dimensional response vari-
able, Xit be a p-dimensional covariate. The simplest model for panel data analysis
would be

yit = αi + XT
itβ + eit , i = 1, . . . , n, t = 1, . . . , T ,(1.1)

where αi , i = 1, . . . , n, and β are unknown parameters to be estimated,

E(eit |Xit ) = 0, Var(eit |Xit ) = σ 2, i = 1, . . . , n, t = 1, . . . , T .(1.2)

However, it is well noted that the constant conditional variance assumption in (1.2)
may not be plausible as eit , t = 1, . . . , T , may be correlated within individual and
some unobserved latent factors, which influence the covariate Xit , may also have
an impact on eit . See Bai and Li (2014) for more detailed discussion. To account
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for the interactive effects caused by such latent factors, Bai and Li (2014) proposed
the following model:{

yit = αi + XT
itβ + fT

t λi + εit ,

Xit = μi + �ift + εit ,
i = 1, . . . , n, t = 1, . . . , T ,(1.3)

where: ft is a q dimensional latent factor; αi , β , λi , μi and �i are unknown pa-
rameters; εit and εit are random errors.

Model (1.3) is useful for panel data analysis with interaction effects. A notice-
able characteristic of (1.3) is that it stipulates the impact of a covariate Xit on
the response yit to be the same across all individuals. If the goal is to provide a
global account of the impact of Xit on yit , this model may be sensible. However,
this model would miss the individual/subgroup attribute of the impact, which may
be very important in many cases. Furthermore, from statistical modelling point of
view, (1.3) may suffer from estimation and prediction bias. A simple approach to
account for the individual/subgroup attribute of the impact would be the following
model: {

yit = αi + XT
itβi + fT

t λi + εit ,

Xit = μi + �ift + εit ,
i = 1, . . . , n, t = 1, . . . , T ,(1.4)

where: εit , i = 1, . . . , n, t = 1, . . . , T , are i.i.d.; εit , i = 1, . . . , n, t = 1, . . . , T ,
are i.i.d.; ft , t = 1, . . . , T , are i.i.d.; β i = (βi1, . . . , βip)T. In this model, we also
assume ft , εit and εit , i = 1, . . . , n, t = 1, . . . , T , are independent of each other
with

E(εit ) = 0, var(εit ) = σ 2
1i , E(ft ) = 0q, cov(ft ) = �f ,

E(εit ) = 0p, cov(εit ) = σ 2
2iIp,

where 0p is a p dimensional vector with each component being 0 and Ip is an
identity matrix of size p.

Although (1.4) takes into account the individual attribute of βij , it involves too
many unknown parameters. This model is not parsimonious and would suffer from
inflated estimation variances. Further, (1.4) may overlook the inherent homogene-
ity among the impacts βij , i = 1, . . . , n, j = 1, . . . , p. Such homogeneity within
grouped subjects is equally important as the individual attribute of βij . To make the
model more parsimonious and at the same time allowing the homogeneity among
regression coefficients, we impose the following structural condition on (1.4):

βij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β0,1, when (i, j) ∈ A1,

β0,2, when (i, j) ∈ A2,

...
...

β0,N+1, when (i, j) ∈ AN+1,

(1.5)

where N is fixed and {Ak : 1 ≤ k ≤ N + 1} is an unknown partition of {(i, j) : 1 ≤
i ≤ n;1 ≤ j ≤ p} and to be estimated.
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Model (1.4) with the homogeneity condition (1.5) is the model we are going to
study in this paper. It is easy to see that model (1.4) is not identifiable. To address
this issue, we assume �f is a q×q identity matrix Iq . For i = 1, . . . , n, σ 2

1i , σ
2
2i , αi ,

λi , μi and �i are unknown parameters. For k = 1, . . . ,N + 1, N , β0,k and Ak are
unknown parameters of interest to be estimated. As the main objective of this paper
is to explore the impact of the covariate Xit on the response yit , which is what
people are most interested in reality, we only focus on the estimation for N , β0,k

and Ak , though all other unknown parameters can be obtained in the estimation
procedure.

Regression under homogeneity condition has been studied by quite a few recent
works, for example, Bai (1997), Bai and Li (2012), Bai and Ng (2002), Fred and
Jain (2003), Harchaoui and Lévy-Leduc (2010), Shen and Huang (2010), Yang
et al. (2012), Zhu, Shen and Pan (2013), Tibshirani et al. (2005), Friedman et al.
(2007), Bondell and Reich (2008), Jiang et al. (2013), Ke, Fan and Wu (2015)
and the reference therein. However, the methods in these works are all based on
penalised likelihood/least squares under the framework of treating homogeneity
as a kind of sparsity, and the models addressed by these authors are also different
from what we study in this paper. The closest model in the literature to the model
addressed in this paper is that in Ke, Fan and Wu (2015). The model in Ke, Fan and
Wu (2015) is a special case of our model. In particular, the model in Ke, Fan and
Wu (2015) does not include any latent variables. The latent variables substantially
increase the estimation complexity, but on the other hand they approximate the
reality more closely.

Unlike the existing literature that uses penalised likelihood/least squares, we
are going to propose an estimation procedure based on a likelihood method
coupled with change point detection and binary segmentation algorithm to esti-
mate N , the partition {Ak : 1 ≤ k ≤ N + 1} and the unknown parameters β0,k ,
k = 1, . . . ,N + 1. Simulation studies show that our proposed procedure works
very well and outperforms the CARDS proposed in Ke, Fan and Wu (2015) under
the same simulation settings.

The rest of the paper is organised as follows. We begin in Section 2 with an esti-
mation procedure for the proposed model. In Section 3, we present the asymptotic
properties of the proposed estimation procedure. Because there are no closed forms
for the proposed estimators, an EM-type algorithm is provided in Section 4 to im-
plement the proposed estimation procedure. Simulation studies are conducted in
Section 5 to show how well the proposed estimation procedure works. In Section 6,
we apply the proposed model together with the proposed estimation procedure to
analyse a data set about the income dynamics in the USA, which leads to some
interesting findings. We leave the technical conditions and theoretical proofs of all
theoretical results in Section 8.

2. Estimation procedure. Without loss of generality, we assume εit , ft and
εit follow normal distribution. In fact, the proposed estimation procedure is still
applicable even when the normality assumption is violated. The estimation proce-
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dure consists of three steps: we first treat all βij as being different and estimate
them by the standard maximum likelihood estimation, we call this step initial es-
timation; then we apply the standard binary segmentation algorithm to detect the
homogeneity among βij ; finally, we incorporate the detected homogeneity among
βij into the maximum likelihood estimation to obtain the final estimators of the
unknown parameters, we call this step final estimation.

Step 1: Initial estimation. Let

Zit = (
yit ,X

T
it

)T
, γ i = (

αi,μ
T
i

)T
, eit = (

σ−1
1i εit , σ

−1
2i εT

it

)T
,

Gi =
(

1 −βT
i

0p Ip

)
and Di =

(
λT

i

�i

)
.

Then (1.4) can be written as

GiZit = γ i +Dift + eit , i = 1, . . . , n, t = 1, . . . , T .

In matrix form, this is equivalent to

GZt = a + DTξ t , t = 1, . . . , T ,(2.1)

where

G = diag(G1, . . . ,Gn), Zt = (
ZT

1t , . . . ,Z
T
nt

)T
, a = (

γ T
1 , . . . ,γ T

n

)T
,

D = ((
DT

1 , . . . ,DT
n

)T
,�1/2

e
)T and ξ t = (

fT
t , eT

1t , . . . , eT
nt

)T
.

In addition,

E(ξ t ) = 0, cov(ξ t ) = �,

where

�e = diag(�1, . . . ,�n), � = diag(�f , In(p+1)) = In(p+1)+q and

�i =
(

σ 2
1i 0T

p

0p σ 2
2iIp

)
for i = 1, . . . , n.

It is easy to see that the log likelihood function of the unknown parameters is

L(θ ,D) = −1

2

T∑
t=1

(Zt −Xtθ)T(
DT�D

)−1
(Zt −Xtθ) − T

2
log

(∣∣DT�D
∣∣)

(2.2)

− n(p + 1)T

2
log(2π),

where

Xt = diag(B1t , . . . ,Bnt ), Bit =
(

1 XT
it 0T

p

0p 0p×p Ip

)
,
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0p×p is a matrix of size p with each entry being 0, and

θ = (
α1,β

T
1 ,μT

1 , . . . , αn,β
T
n,μT

n

)T
.

The maximiser of (2.2) is the estimator of unknown parameters. In particu-
lar, the part of the maximiser that corresponds to β i is an initial estimator, to be
denoted by β̃i . Furthermore, we denote the j th entry of β̃ i as β̃ij and use this
component as the initial estimator of βij .

It is well known that the maximiser of (2.2) does not have a closed form
[Pinheiro and Bates (2000)]. However, if DT�D were known, the maximiser of
(2.2) would be a generalised least squares estimator [Kariya and Kurata (2004)]
given by

θ̃ =
{

T∑
t=1

X T
t

(
DT�D

)−1Xt

}−1 T∑
t=1

X T
t

(
DT�D

)−1Zt .(2.3)

The difficulty with the maximisation of (2.2) lies at the unknown DT�D. We shall
appeal the EM algorithm to solve this problem later. If we ignore the correlation
for panel data and treat DT�D as an identity, the resulting estimators are in general
not efficient. We investigate such estimators in the simulation studies and refer to
them as estimates without covariance adjustment. In contrast, our proposed esti-
mators acknowledging the panel data correlation are referred to as estimates with
covariance adjustment.

Step 2: Detection of homogeneity. We sort the initial estimators β̃ij , i =
1, . . . , n, j = 1, . . . , p, in ascending order, and denote them by

β̃(1) ≤ · · · ≤ β̃(np).

We use Rij to denote the rank of β̃ij . The detection of homogeneity is equivalent
to the detection of change points among β̃(l), l = 1, . . . , np. To this end, we apply
the binary segmentation algorithm in the following.

For any 1 ≤ i < j ≤ np, let

Si,j (κ) = 1

j − i

{
κ∑

l=i

(β̃(l) − β̄i,κ )2 +
j∑

l=κ+1

(β̃(l) − β̄κ+1,j )
2

}
,

(2.4)

where β̄i,κ = 1

κ − i + 1

κ∑
l=i

β̃(l) and β̄κ+1,j = 1

j − κ

j∑
l=1+κ

β̃(l).

Given a threshold δ, which we will elaborate how to select later, the procedure
using the binary segmentation algorithm to detect the change points is introduced
as follows:
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(1) Compute S1,np(np). If S1,np(np) ≤ δ, there is no change point among β̃(l),
l = 1, . . . , np, and the process of detection ends. If S1,np(np) > δ, we minimise
S1,np(κ) with respect to κ in the range 1, . . . , np − 1, that is to find k̂1 such that

S1,np(k̂1) = min
1≤κ<np

S1,np(κ).

Then we add k̂1 to the set of change points and divide the region {κ : 1 ≤ κ ≤ np}
into two subregions: {κ : 1 ≤ κ ≤ k̂1} and {κ : k̂1 + 1 ≤ κ ≤ np}.

(2) Detect the change points in the two subregions obtained in (1), respectively.
Let us deal with the region {κ : 1 ≤ κ ≤ k̂1} first. Compute S1,k̂1

(k̂1). If S1,k̂1
(k̂1) ≤

δ, there is no change point in the region {κ : 1 ≤ κ ≤ k̂1}. Otherwise, find k̂2 such
that

S1,k̂1
(k̂2) = min

1≤κ<k̂1

S1,k̂1
(κ).

Add k̂2 to the set of change points and divide the region {κ : 1 ≤ κ ≤ k̂1} into two
subregions: {κ : 1 ≤ κ ≤ k̂2} and {κ : k̂2 + 1 ≤ κ ≤ k̂1}. For the region {κ : k̂1 + 1 ≤
κ ≤ np}, we compute S

k̂1+1,np
(np). If S

k̂1+1,np
(np) ≤ δ, there is no change point

in the region {κ : k̂1 + 1 ≤ κ ≤ np}. Otherwise, find k̂3 such that

S
k̂1+1,np

(k̂3) = min
k̂1+1≤κ<np

S
k̂1+1,np

(κ).

Add k̂3 to the set of change points and divide the region {κ : k̂1 + 1 ≤ κ ≤ np} into
two subregions: {κ : k̂1 + 1 ≤ κ ≤ k̂3} and {κ : k̂3 + 1 ≤ κ ≤ np}.

(3) For each subregion obtained in (2), we do exactly the same as that for the
subregion {κ : 1 ≤ κ ≤ k̂1} or {κ : k̂1 + 1 ≤ κ ≤ np} in (2), and keep doing so until
there is no subregion containing any change point.

We sort the estimated change point locations in ascending order and denote
them by

k̂(1) < k̂(2) < · · · < k̂
(N̂ )

,

where N̂ is the number of change points detected. In addition, we denote k̂(0) = 0
and k̂

(N̂+1)
= np.

We use N̂ to estimate N and{{
(i, j) : k̂(s−1) < Rij ≤ k̂(s)

} : 1 ≤ s ≤ N̂ + 1
}
,

to estimate the partition {As : 1 ≤ s ≤ N +1}. We consider that all βij s in the same
estimated partition have the same value.
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Step 3: Final estimation. Making use of the homogeneity detected in step 2,
we re-parameterise βij in (1.4) by setting βij = ζs if k̂(s−1) < Rij ≤ k̂(s) for some
s, 1 ≤ s ≤ N̂ + 1. Through this re-parameterisation, the np unknown parameters
βij , i = 1, . . . , n, j = 1, . . . , p, are reduced to N̂ + 1 unknown parameters ζs ,
s = 1, . . . , N̂ + 1.

Replacing each βij , i = 1, . . . , n, j = 1, . . . , p, in (1.4) by its corresponding
ζs , we then apply the maximum likelihood estimation to compute the estimator
ζ̂s of ζs , s = 1, . . . , N̂ + 1, and construct the final estimator β̂ij of βij through
β̂ij = ζ̂s if k̂(s−1) < Rij ≤ k̂(s) for some s, 1 ≤ s ≤ N̂ + 1. The final estimator is
β̂i = (β̂i1, . . . , β̂ip)T.

Apparently, the whole estimation procedure depends crucially on the threshold
δ used in step 2. If δ is too small, we would come up with too many groups, leading
to inflated variances of the final estimators. On the other hand, if δ is too large, we
would mistakenly group different βij s in the same region and treat them as the
same, leading to a biased final estimators. There are many ways to choose δ in
practice. In this paper, we use the standard Bayesian information criterion (BIC)
to select δ. Our simulation results show the BIC works very well.

3. Asymptotic results. In this section, we are going to provide the asymptotic
properties of the estimator of βi constructed in three different cases:

(1) Overfitting case, that is the estimator of β i is constructed without using the
homogeneity condition (1.5), which is to use the initial estimator, obtained in step
1 of the proposed estimation procedure, as the final estimator. In this case, we
denote the estimator of βi by β̃i .

(2) Correct fitting case, that is the homogeneity condition (1.5) is taken into ac-
count in the construction of the estimator β̂i of β i , and the estimator is constructed
by the proposed estimation procedure. This is the right approach to the model.

(3) Mis-specification case, that is the estimator of β i is constructed under the
assumption β1 = · · · = βn = β∗ when this assumption is wrong. We use β̌ to
denote the resulting estimator. See Bai and Li (2014) for estimation details for this
case.

The technical conditions needed for the asymptotic properties stated in this sec-
tion are introduced in Section 8.1. The proofs of the theorems are given in Sec-
tion 8.2. In Section 8.3, we provide some technical lemmas to show the uniform
consistency of the initial estimators, which are needed in the proofs of the follow-
ing theorems.

In this paper, we use β0 = (β0T
1 , . . . ,β0T

n )T and D0 to denote the true values of

β = (βT
1 , . . . ,βT

n)T and D, respectively. Let β̂ = (β̂
T
1 , . . . , β̂

T
n)T and β̂

oracle
be the

oracle maximum likelihood estimator of β obtained under the assumption that the
homogeneity structure was given. For each i, i = 1, . . . , n, let �i be the selection
matrix such that βi = �iθ . Furthermore, we denote 	 = (�1, . . . ,�n)

T.
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THEOREM 1 (Overfitting case). Under Conditions 1–2 in Section 8.1, if
n2/T → 0, we have

√
T

(
�∗

i

)−1/2(
β̃i − β0

i

) D−→N (0, Ip), i = 1, . . . , n,

where

�∗
i = lim

T →∞�i

(
1

T

T∑
t=1

X T
t

(
D0TD0)−1Xt

)−1

�T
i .

The above theorem provides the asymptotic normality of β̃i which is obtained
without using the homogeneity condition (1.5). According to Lemma 3 in Sec-
tion 8.3, we can see β̃i is also uniformly consistent with respect to i over 1, . . . , n,
and the convergence rate is of order 1/

√
T .

In the following theorem, with probability approaching one, we show the pro-
posed procedure can correctly detect the homogeneity structure and the conver-
gence rate of the final estimator is of order 1/

√
nT , much faster than 1/

√
T .

Before presenting the next theorem, we introduce some notation. Let MA be a
subspace of Rnp defined by

MA = {
β ∈ R

np : βij = βkl, for any (i, j), (k, l) ∈ As,1 ≤ s ≤ N + 1
}
,

A be a (N + 1) × np matrix such that βA = Aβ , where βA is an (N + 1) × 1
vector with its sth component βA,s being the common coefficient in group As . β0

A,

β̂A and β̂
oracle
A are defined in the same way.

It is straightforward to see the (s, l)th, s = 1, . . . ,N + 1, l = 1, . . . , np, entry of
A is the indicator function 1

|As |1(βl ∈ As), where |As | is the size of group As .

THEOREM 2 (Correct fitting case). Under Conditions 1–3 in Section 8.1,

P(N̂ =N ) −→ 1 and P
(
k̂(s) = k0

(s)

) −→ 1, s = 1, . . . ,N .

Also, with probability approaching one, the final estimator β̂ is equal to the oracle

estimator β̂
oracle

. Furthermore,
√

nT (�A)−1/2(β̂oracle
A − β0

A

) D−→N (0, IN+1),

where

�A = lim
T →∞A	

(
1

T

T∑
t=1

X T
t

(
D0TD0)−1Xt

)−1

	TT
A.

REMARK. We can envisage asymptotic results similar to Theorem 2 that could
be derived for the case where p is diverging. However, the technical conditions
would be much stronger, and the technical proofs would be much more involved.
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Now we consider the asymptotic behaviour of the estimator in the mis-

specification case. We denote β̌ = (β̌
T
1 , . . . , β̌

T
n)T the maximum likelihood esti-

mator of β = (βT
1 , . . . ,βT

n)T based on the mis-specified model which assumes
β1 = · · · = βn = β∗. In the following theorem, we will show β̌ is inconsistent.
Therefore, the detection of homogeneity is necessary as it will not only reduce the
variance compared with the over-fitting case, but also avoid inconsistent estimation
compared with the mis-specification case.

THEOREM 3 (Mis-specification case). Under Conditions 1–4 in Section 8.1,
with probability 1 we have ∥∥β̌ − β0∥∥ ≥ C

√
n,

where C > 0.

4. Computational algorithm. Regarding the computational issues, the main
difficulty to implement the proposed estimation procedure is the maximisation of
the log likelihood function of unknown parameters. One can see that the maximi-
sation of the log likelihood function in the final estimation step is the same as that
in the initial estimation step. Therefore, we only introduce the maximisation in the
initial estimation step, that is the maximisation of (2.2).

Let

H = (
DT

1 , . . . ,DT
n

)T and �0 = diag(�1, . . . ,�n).

It is easy to see

DT�D = H�f HT + �0.

We apply the following iterative procedure to maximise (2.2):

(1) In the first iteration, we set the initial values of H and �0 such that DT�D
is In(p+1). By (2.3), we have the initial value of θ , which is

θ (0) =
{

T∑
t=1

X T
t Xt

}−1 T∑
t=1

X T
t Zt .

We fix the θ in (1.4) at θ (0). Then we apply the EM algorithm, which will be
detailed later, to update H and �0 and thereby DT�D. The updated DT�D is
denoted by DT

(1)�(1)D(1). Replacing the DT�D in (2.3) by DT
(1)�(1)D(1), we can

update θ to

θ (1) =
{

T∑
t=1

X T
t

(
DT

(1)�(1)D(1)

)−1Xt

}−1 T∑
t=1

X T
t

(
DT

(1)�(1)D(1)

)−1Zt .
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(2) In the second iteration, we fix the θ in (1.4) at θ (1). By applying the EM
algorithm, we can get the updated H and �0 and thereby the updated DT�D which
is denoted by DT

(2)�(2)D(2). Again, by (2.3), we can update θ to θ (2).
(3) We continue this iterative algorithm until convergence.

In the following part, we are going to introduce the EM algorithm used to update
H and �0 in the above iterative procedure.

From model (1.4), one can see the log likelihood function of the unknown pa-
rameters based on {(ZT

t , fT
t ) : t = 1, . . . , T } is

L = −1

2

T∑
t=1

(Zt −Xtθ − Hft )T�−1
0 (Zt −Xtθ − Hft ) − T

2
log

(|�0|)

− 1

2

T∑
t=1

fT
t �−1

f ft

− T

2
log

(|�f |) − qT

2
log(2π) − n(p + 1)T

2
log(2π).

By some calculations, we can see the conditional distribution of ft given Zt is

N
((

HT�−1
0 H + �−1

f

)−1HT�−1
0 (Zt −Xtθ),

(
HT�−1

0 H + �−1
f

)−1)
.

We denote the mean and covariance matrix of the conditional distribution of ft
given Zt after kth iteration by Mt,(k) and V(k) respectively, and the estimated θ

after the kth iteration by θ (k). Also let

Z(k) ≡ ({Z1 −X1θ (k)}T, . . . , {ZT −XT θ (k)}T)T
,

m(k) = (M1,(k), . . . ,MT,(k))
T.

After the kth iteration, the conditional expectation of L, with respect to the condi-
tional distribution of {f1, . . . , fT } given {Z1, . . . ,ZT } and θ (k), is

L(k)(H, σ11, . . . , σ1n, σ21, . . . , σ2n)

= −1

2

T∑
t=1

(Zt −Xtθ (k) − HMt,(k))
T�−1

0 (Zt −Xtθ (k) − HMt,(k))

− T

2
tr
(
HT�−1

0 HV(k)

)
− 1

2

T∑
t=1

MT
t,(k)�

−1
f Mt,(k) − T

2

{
log

(|�0|) + tr
(
�−1

f V(k)

) + log
(|�f |)}

− qT

2
log(2π) − n(p + 1)T

2
log(2π).
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By maximising L(k)(H, σ11, . . . , σ1n, σ21, . . . , σ2n) with respect to H, σ1i and σ2i ,
i = 1, . . . , n, we can obtain the maximiser as

H(k+1) = ZT
(k)m(k)

(
mT

(k)m(k) + T V(k)

)−1
, σ 2

1i,(k+1) = 1

T
uT
i ZT

(k)P(k)Z(k)ui

and

σ 2
2i,(k+1) = 1

pT
tr
(
viZT

(k)P(k)Z(k)v
T
i

)
,

where

P(k) = IT − m(k)

(
mT

(k)m(k) + T V(k)

)−1mT
(k),

ui = ς(p+1)(i−1)+1,(p+1)n, vi = (0p×((p+1)(i−1)+1), Ip,0p×((p+1)(n−i))),

and ςi,k is a unit vector with length k and ith component being 1.
Then we use H(k+1), σ 2

1i,(k+1) and σ 2
2i,(k+1), i = 1, . . . , n to update �0 in the

(k + 1)th iteration.

5. Simulation studies. In this section, we conduct simulations to assess the
performance of the proposed procedure. In Section 5.1, we examine the accuracy
of homogeneity detection of our procedure and compare it with some existing
approaches. In Section 5.2, we test the estimation accuracy of our procedure for
complicated panel data.

5.1. Accuracy of homogeneity detection. Most existing homogeneity detec-
tion methods are confined to cross-sectional data. One representative is the
CARDS method proposed by Ke, Fan and Wu (2015). We compare our proce-
dure with the CARDS in this subsection. To make the comparison convincing, we
keep the simulation settings the same as that in Ke, Fan and Wu (2015), and use
the same criterion to measure the accuracy of detection. We note that the model
considered in the numerical study of Ke, Fan and Wu (2015) is a linear regression
model. Nevertheless, the goal of identifying homogeneous regression coefficients
is essentially the same as what we study in this paper for factor model.

In the following, we abbreviate the change point detection method proposed in
this paper as the CPD method. The detailed simulation settings are as follows.

We generate the sample from

yi = XT
i β + εi,(5.1)

where {Xi : 1 ≤ i ≤ n} are independently generated from the standard multivariate
normal distribution, and {εi : 1 ≤ i ≤ n} are independently generated from standard
normal distribution and independent with the covariates. All the simulation results
are based on 100 replicates.

We set p = 60 and n = 100. Predictors are divided into four groups with each
group of size 15. The four different values of the true regression coefficients are
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−2r , −r , r , and 2r , respectively. We consider different values of r > 0 for various
signal-to-noise ratios.

In this example, the BIC we used to select δ in the CPD method is

n∑
i=1

(
yi − XT

i β̂
)2 + # log(n),(5.2)

where # is the total number of distinct parameters in the estimated model.
We compare the performance of the CPD method with 5 existing methods along

with the oracle estimators. Performance is evaluated in terms of the average pre-
diction error over an independent test sample of size 10,000 from model (5.1).
In addition, we consider the normalized mutual information (NMI) to measure
how close the estimated grouping structure approaches the true structure. Sup-
pose C = {C1,C2, . . .} and D = {D1,D2, . . .} are two sets of disjoint cluster of
{1,2, . . . , p}. The NMI is defined as

NMI(C,D) = 2I (C,D)

H(C) + H(D)
,(5.3)

where

I (C,D) = ∑
k,j

(|Ck ∩ Dj |/p)
log

(
p|Ck ∩ Dj |/|Ck||Dj |)

is the mutual information between the two clusterings, and

H(C) = −∑
k

(|Ck|/p)
log

(|Ck|/p)
is the entropy of C. NMI ranges between 0 and 1 with large values indicating a
higher degree of similarity between the two clusterings. The results are reported in
Table 1. Because we use the same simulation settings as that in Ke, Fan and Wu
(2015), the results reported in their paper are adapted in Table 1.

Table 1 shows the CPD method performs very well as it has the largest NMI
values across all settings, indicating that it can recover the true grouping structure.
The prediction errors are also comparable to CARDS and in general better than
TV, fLASSO and OLS.

5.2. Accuracy of estimation. We generate a sample from model (1.4) with the
homogeneity condition (1.5) and set

n = 50, T = 50, p = 4, q = 3, �f =
⎛⎝ 1 0.75 0.75

0.75 1 0.75
0.75 0.75 1

⎞⎠ ,

αi = 1 for all i, βi1 being the realization of a sample which is independently drawn
from a discrete uniform with atoms {−2r, r}, βi2 being the realization of a sample
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TABLE 1
Simulation results for homogeneity detection

r Oracle OLS CPD bCARDS aCARDS TV fLASSO

Medians of the average prediction error over 100 repetitions
1.0 1.0355 1.6112 1.0390 1.0504 1.1182 1.4847 1.4253
0.9 1.0273 1.5885 1.0417 1.0479 1.1048 1.4608 1.4186
0.8 1.0359 1.5947 1.0811 1.0826 1.1786 1.4777 1.4427
0.7 1.0311 1.6038 1.2417 1.1250 1.2830 1.5591 1.4625
0.6 1.0370 1.6054 1.4095 1.3172 1.4586 1.5795 1.4824
0.5 1.0347 1.5826 1.4536 1.3645 1.5734 1.5734 1.4668

Medians of the NMI over 100 repetitions
1.0 1.0 0.5059 1.0000 0.9414 0.9784 0.7203 0.6503
0.9 1.0 0.5059 0.9911 0.9414 0.9784 0.7167 0.6521
0.8 1.0 0.5059 0.9762 0.8609 0.9355 0.7245 0.6549
0.7 1.0 0.5059 0.9650 0.7912 0.8989 0.6991 0.6458
0.6 1.0 0.5059 0.9170 0.7008 0.8763 0.6808 0.6373
0.5 1.0 0.5059 0.8575 0.6722 0.6741 0.6654 0.6251

“Oracle” refers to the least squares estimator with knowing the true grouping; “OLS” refers to the or-
dinary least squares estimator with no grouping; “CPD” refers to our change point detection method;
“bCARDS” and “aCARDS” are two versions of clustering algorithm in regression via data-driven
segmentation; “TV” refers to the total variation method; “fLASSO” refers to the fused LASSO.

independently drawn from a discrete uniform with atoms {−r,2r}, βi3 being the
realization of a sample which is independently drawn from a discrete uniform with
atoms {−2r,−r}, βi4 being the realization of a sample independently drawn from
a discrete uniform with atoms {r,2r}. The elements of λi , μi and �i are set to be
the realizations of samples generated independently from the standard normal dis-
tribution. ft is generated independently from the multivariate normal distribution
with mean zero and covariance matrix �f . εit and εit are generated independently
from the standard normal distribution. We deliberately set �f non-identity matrix
to show our method still works very well for such situation.

To have a deep insight about the advantage of the proposed estimation pro-
cedure, for each generated sample, we evaluate the pre-grouping initial estimate
without covariance adjustment (E1), the pre-grouping estimate adjusted for covari-
ance (E2), the post-grouping initial estimate without covariance adjustment (E3)
and the post-grouping final estimate adjusted for covariance (E4), which is the
proposed estimation procedure. After 500 simulations, we summarise the mean
squared error and mean absolute errors for regression parameters in Table 2. The
simulation results show our final estimates are consistent to the true parameters.
We notice that the estimation was drastically improved after we considered the
homogeneity of the regression coefficients. The covariance adjusted estimators are
generally closer to the true parameters than the naive estimates without covariance
adjustment.
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TABLE 2
Estimation results over 500 repetitions

μ α β

r Estimate MSE MAE MSE MAE MSE MAE

2.0 E1 10.64 2.92 0.9025 0.6968 10.61 2.92
E2 10.45 2.91 0.2762 0.3971 10.61 2.92
E3 0.1917 0.3358 0.1751 0.3246 0.0097 0.0763
E4 0.1917 0.3358 0.1686 0.3149 0.0062 0.0646

1.0 E1 3.4102 1.5485 0.9165 .6846 3.3414 1.5343
E2 3.2325 1.5149 0.2655 0.3870 3.3414 1.5343
E3 0.1573 0.2875 0.2347 0.3374 0.0098 0.0815
E4 0.1573 0.2875 0.2321 0.3349 0.0065 0.0667

0.75 E1 2.4823 1.2914 0.9622 .7043 2.4852 1.2857
E2 2.3126 1.2487 0.3100 0.4176 2.4852 1.2857
E3 0.2072 0.3423 0.3313 0.4183 0.0081 0.0713
E4 0.2072 0.3423 0.3239 0.4129 0.0079 0.0683

“E1” refers to the pre-grouping initial estimate without covariance adjustment, “E2” refers to the pre-
grouping estimate adjusted for covariance, “E3” refers to the post-grouping initial estimate without
covariance adjustment, and “E4” refers to the post-grouping final estimate adjusted for covariance.
“MSE” is the mean squared error and “MAE” is the mean absolute error, averaged over all elements
of the parameters.

6. Real data analysis. In this section, we study a real data of the non-Survey
of Economic Opportunity portion of the Panel Study of Income Dynamics (PSID).
This data is drawn from 1976 to 1982. Starting with a national sample of 5000 U.S.
households in 1968, the PSID re-interviewed individuals from those households
over the years. These individuals are re-interviewed whether or not they are living
in the same house or with the same people. New households are added to the
sample when the children of the panel families grow up and start their own family.
The sample size has increased from about 4800 core households in 1968 to almost
10,700 in 1992. The study is conducted by the Survey Research Center, Institute
for Social Research, University of Michigan (home page: http://www.isr.umich.
edu/src/psid/).

The individuals in our sample are 595 heads of household between the ages
of 18 and 65 in 1976, who report a positive wage in some private, non-farm em-
ployment for all 7 years. The response variable is the logarithm of wage. The
predictors include years of full-time work experience (EXP), the squared term of
experience (EXP2), weeks worked (WKS), occupation (OCC = 1, if the individual
has blue-collar occupation), industry (IND = 1, if the individual works in a man-
ufacturing industry), residence (SOUTH = 1, SMSA = 1, if the individual resides
in the south, or in a standard metropolitan statistical area), marital status (MS = 1,

http://www.isr.umich.edu/src/psid/
http://www.isr.umich.edu/src/psid/
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TABLE 3
Estimation results for PSID analysis

CPD2 CPD1 LME0 LME1 BL

Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE

EXP 0.1124 0.0006 0.1125 0.0163 0.1078 0.0024 0.1072 0.0024 0.1342 0.0217
0.1388 0.0027 0.1374 0.0324 – – 0.1257 0.0041 – –
0.1740 0.0115 0.1741 0.0965 – – 0.1437 0.0116 – –

EXP2 −0.0005 0.00001 −0.0005 0.0004 −0.0005 0.00005 −0.0005 0.00005 −0.0005 0.0004
WKS 0.0005 0.0001 0.0009 0.0040 0.0008 0.0006 0.0009 0.0006 0.0001 0.0042
OCC −0.0108 0.0034 −0.0220 0.0907 −0.0396 0.0137 −0.0383 0.0136 −0.0001 0.1019
IND 0.0173 0.0039 0.0187 0.1017 0.0088 0.0153 0.0082 0.0152 0.0086 0.1068
SOUTH 0.0003 0.0172 0.0017 0.2257 −0.0161 0.0320 −0.0126 0.0319 0.0702 0.2776
SMSA −0.0363 0.0080 −0.0345 0.1284 −0.0401 0.0190 −0.0349 0.0189 −0.0437 0.1545
MS −0.0243 0.0050 −0.0287 0.1249 −0.0354 0.0188 −0.0347 0.0187 −0.2283 0.1612
UNION 0.0182 0.0041 0.0313 0.0983 0.0330 0.0148 0.0333 0.0147 0.0370 0.1050

“CPD2” is our proposed change point detection method with covariance adjustment; “CPD1” is the
change point detection method without covariance adjustment; “LME0” is the linear mixed effects
model with constant coefficient; “LME1” is the linear mixed effects model with non-constant coef-
ficients; “BL” is the Bai-Li estimator. “Coef.” is the estimated regression coefficient and “SE” is the
standard error.

if the individual is married) and union coverage (UNION = 1, if the individual’s
wage is set by a union contract).

We first estimate regression coefficients using model (1.4) and then apply the
change point detection algorithm for each predictor variable. The algorithm de-
tected non-constant coefficients for EXP have three different groups and did not
detect any non-constant coefficients for all other predictors. The individual esti-
mates of EXP coefficients before and after grouping are plotted in Figure 1. The
final estimates are presented in Table 3 along with standard errors. The wage gains
from an additional year of past work experience are 0.11, 0.13 and 0.18, respec-
tively, for the three groups of individuals, indicating a positive association. We
compared estimates obtained with and without covariance adjustment, denoted by
CPD2 and CPD1, respectively, in Table 3. The coefficient estimates are close but
the standard errors of CPD1 estimates are much larger than those of CPD2 esti-
mates. Hence, the covariance adjustment can improve the estimation efficiency.

In Table 3, we also compared the regression estimates from the standard linear
mixed effects (LME) models without and with grouping, denoted by LME0 and
LME1, respectively. When all individuals are placed in a single group, the wage
gain for an additional year of past work experience is only 0.1078. This estimated
moderate overall effect may result from a dominating class of individuals in the
sample and implicitly masks the stronger effects of some subgroups. Interpreta-
tion of regression estimates from LME is similar to that of model (1.4). However,
LME models do not lend support for the latent factors. Further, we implemented
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FIG. 1. Estimated coefficients for EXP for all individuals in PSID data. The blue dashed line is the
sorted estimate for individual subjects before grouping. The green solid line is the sorted estimate
after grouping. The Web version of this plot is coloured.

the estimator in Bai and Li (2014) for the PSID data and reported the fitted results
in Table 3 as well. Though their estimated coefficients are similar to our estimates,
the standard errors of Bai–Li estimators are much larger. Model 1.3 does not in-
corporate the proper coefficient structure, and consequently the model estimates
inflate the estimation variation.

The estimated latent factors ft are −60.69, −42.94, −23.66, −2.88, 19.28,
42.98 and 67.93 for the years 1976–1982. There is an increasing trend for the
mean log wage during this period, roughly 20 wage gain per year for a subject
with a unit random effect λi . In our model, individuals’ random effects cooperate
with the latent year effects to generate the time-varying regressors and outcomes.
Specifically, comparing two individuals observed at the same year t , the predicted
income difference should depend on their own characteristics, say λi, λj , as well
as the contemporary year effect. This is in contrast with the standard LME model
where only subject-specific random effects are modelled and the random effects
are assumed to be the same across the years. The more sophisticated latent factor
structure in our model may help explaining how individuals’ unobserved latent
characteristics progress in the years and their variation may be fully examined via
the latent factor independent of the individual’s personal working ability or skill.

The estimated random effects λi and �i are also available from our analysis. For
space consideration, we report them in the online supplementary file of the paper
[Ke, Li and Zhang (2015)]. We have also fitted the model with q = 2 and q = 3.
The results are very similar to what we have reported in this section.
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7. Discussion. We have assumed the factors ft to be i.i.d. in this paper.
Sometimes it may be of interest to consider a more complicated setting with
cov(ft , ft ′) �= 0. This setting could be plausible when there are multi-level of un-
observed latent factors or the random factors may progress dependently over the
time. Our estimation procedure can be modified to satisfy this kind of advanced
requirement. Throughout this paper, we fix the number of factors q . A more objec-
tive selection method based on information criteria may be adopted to determine
an optimal q value. We are still developing the necessary theoretical and compu-
tational framework.

8. Technical conditions and proofs of the theoretical results. In Sec-
tion 8.1, we introduce the technical conditions that are needed to prove the asymp-
totic results in this paper. In Sections 8.2 and 8.3, we provide the detailed proofs
of the main theoretical results and some technical lemmas, respectively.

8.1. Technical conditions. Set Vt = (Yt ,XT
1t , . . . ,XT

nt )
T, t = 1, . . . , T . Let

L(�) be the log likelihood function of observations V1, . . . ,VT , where � is a
vector of all unknown parameters and contains θ as its sub-vector, that is, every
entry of θ is also an entry of �. Then by the model assumption, V1, . . . ,VT are in-
dependent and identical distributed observations with probability density f (V,�)

with respect to some measure μ, and f (V,�) has common support. In addition,
one can easily see the length of � (i.e., the number of unknown parameters) is
n{(p + 1)(q + 2) + 1}. Denote  the parameter space for �.

Furthermore, for j, k, l = 1, . . . , n{(p + 1)(q + 2) + 1}, we assume f (V,�)

satisfies the following Condition 1:

CONDITION 1. (i)

E�

[
∂ logf (V,�)

∂�j

]
= 0.

(ii) The Fisher information matrix

I (�) = E�

{[
∂

∂�
logf (V,�)

][
∂

∂�
logf (V,�)

]T}
is finite and positive definite at � = �0.

(iii) There exists an open subset ψ of  that contains the true parameter point
�0 such that for almost all V the density f (V,�) admits all third derivatives
(∂f (V,�))/(∂�j ∂�k ∂�l) for all � ∈ ψ . There exist functions Mjkl such that∣∣∣∣ ∂3

∂�j ∂�k ∂�l

logf (V,�)

∣∣∣∣ ≤ Mjkl(V) for all � ∈ ψ,

where mjkl = E�0[Mjkl(V)] ≤ ∞ for all j , k, l.
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CONDITION 2. Denote λmin(·) and λmax(·) the smallest and largest eigenvalue
of a given matrix, respectively. Suppose C is a sufficiently large positive constant.
For all i = 1, . . . , n, and t = 1, . . . , T :

(i) E(‖ft‖4
F ) ≤ C, E(ε4

it ) ≤ C, E(‖εit‖4
F ) ≤ C and maxi ‖λi‖ ≤ C.

(ii) The covariates satisfy maxi,t ‖Xit‖ ≤ C, where maxi,t means the maxi-
mum among all the possible pairs of {i, t}, and λmin(

1
T

∑T
t=1 X T

t Xt ) ≥ C−1.
(iii) The true value of the generalised loading matrix, that is, D0, satisfies

C−1 ≤ λmin
(
D0TD0)−1 ≤ λmax

(
D0TD0)−1 ≤ C,

and ‖ 1
T

∑T
t=1 D0Tξ t‖) ≤ C.

(iv) The limit limT →∞ 1
T

∑T
t=1 X T

t (D0TD0)−1Xt exists.

CONDITION 3. (i) The number of groups N + 1 is fixed. The size of each
group satisfies |As | = Op(np) for s = 1, . . . ,N + 1.

(ii) The smallest gap between two consecutive groups is lower bounded, that
is, for s = 1, . . . ,N + 1,

J = min
s

|β0,s+1 − β0,s | > C−1.

(iii) Recall (2.4) and assume

S1,np

(
k0
i1

)
< S1,np

(
k0
i2

)
< · · · < S1,np

(
k0
iN

)
,

where {i1, i2, . . . , iN } is a permutation of {1,2, . . . ,N }.
(iv) n logn = o(

√
T ).

(v) When np → ∞, δ → 0 and npδ → ∞.

CONDITION 4. There exists an integer j0, 1 ≤ j0 ≤ p, and two positive con-
stants G0 and G1, such that

0 < G0 < max
1≤s≤N+1

|As,j0 |
n

= Gn < G1 < 1,

where As,j0 = {i : (i, j0) ∈ As}, |As,j0 | is the size of As,j0 .

The above conditions are mild and justifiable. Condition 1 is a commonly used
condition that guarantees asymptotic normality of the ordinary maximum likeli-
hood estimates. See, for example, Lehmann (1983). Condition 2(i) imposes some
moment conditions on the latent factor and random errors and requires loading
vectors are uniformly bounded away from infinity. In Condition 2(ii)–(iv), we im-
pose some conditions on the covariates and the generalised loading matrix D0.
They are all mild and normally required to establish the uniform consistency of
the maximum likelihood estimates. Unlike some existing literature, for example,
Bai and Li (2014), we do not impose any conditions on the estimators of variances
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of random errors and latent factors. Hence, the conditions in this paper are more
realistic in practice. Condition 3 imposes some restrictions on the homogeneity
conditions. Condition 3(i) requires that the number of groups is fixed and the size
of each group is on the same order. The scenario when N is diverging is not of
interest in this paper as, even with a correct detection of homogeneity, the final
estimation is still a diverging dimensional problem. In Condition 3(ii), we impose
a lower bound on the smallest gap between two consecutive groups. Notice this
lower bound can be any small positive constant and hence Condition 3(ii) will not
cause any trouble in real application. Condition 3(iii) is a technical condition to
avoid “tie” situations in change point detection and mainly used to reduce the am-
biguousness in the theoretical proof. Condition 3(iv) requires (n logn)2/T → 0 as
T → ∞. Condition 3(v) is a condition on the threshold δ. Condition 4 is a rea-
sonable condition for distinguishing the “mis-specified” model from the true one.
In general, all these technical conditions should be easily satisfied in most real
applications.

8.2. Proofs of the main theoretical results. In this subsection, we give the de-
tailed proofs of Theorems 1–3 introduced in Section 3.

PROOF OF THEOREM 1. To prove Theorem 1 is enough to show for any given
constant vector a ∈ Rp that√

T
(
aT�∗

i a
)−1/2aT(

β̃i − β0
i

) D−→N(0,1), i = 1, . . . , n,(8.1)

where

�∗
i = lim

T →∞�i

(
1

T

T∑
t=1

X T
t

(
D0TD0)−1Xt

)−1

�T
i .(8.2)

To begin with, we introduce some notation used in this proof. For i = 1, . . . , n

and t = 1, . . . , T , we denote

�i = (0p×{i(2p+1)−2p} Ip 0p×{(n−i)(2p+1)+p}),

K = 1

T

T∑
t=1

X T
t

(
D̃TD̃

)−1Xt and

At = X T
t

(
D̃TD̃

)−1D0Tξ t = (At,1, . . . ,At,n(2p+1))
T.

According to equation (8.48), for i = 1, . . . , n, we have

(
β̃i − β0

i

) = �iK−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

T

T∑
t=1

At,1

...

1

T

T∑
t=1

At,n(2p+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡ �iK−1

⎛⎜⎝ S1
...

Sn(2p+1)

⎞⎟⎠ .



1212 Y. KE, J. LI AND W. ZHANG

To make the structure of this proof clear, we divide the proof into three steps.
In the first step, we want to show

√
T Sj

D−→N
(
0, σ ∗2

j

)
, j = 1, . . . , n(2p + 1),(8.3)

and maxj σ ∗2
j ≤ C for some sufficiently large positive constant C.

For t = 1, . . . , T , we can rewrite the vector At as

At = X T
t

(
D0TD0)−1D0Tξ t +X T

t

[(
D̃TD̃

)−1(D0TD0) − I
](

D0TD0)−1D0Tξ t

≡ Ut + Vt .

We use Ut,j , Vt,j to denote the j th entry of Ut and Vt , respectively. Then we got

Sj = 1

T

T∑
t=1

Ut,j + 1

T

T∑
t=1

Vt,j , j = 1, . . . , n(2p + 1).(8.4)

Now we consider the first part of Sj . According to the model assumption, for
each j , U1,j , . . . ,UT,j are i.i.d. random variables. By the strong law of large num-
bers, we have

Pr

(
lim

T →∞
1

T

T∑
t=1

Ut,j = E[Ut,j ]
)

= 1.

So when T → ∞, with probability equals to 1, we have

max
j

(
E[Ut,j ])2 = max

j

[
1

T

T∑
t=1

Ut,j

]2

.

Similar to the way we proof Lemma 3 and notice the largest eigenvalue of
(D0TD0)−1 is bounded by a positive constant C, we have

max
j

[
1

T

T∑
t=1

Ut,j

]2

≤
∥∥∥∥∥ 1

T

T∑
t=1

Ut

∥∥∥∥∥
2

≤ C

∥∥∥∥∥ 1

T

T∑
t=1

X T
t D0Tξ t

∥∥∥∥∥
2

= Op

(
n

T

)
.

Therefore, we can show E[Ut,j ] = 0 for j = 1, . . . , n(2p + 1) as

0 ≤ (
E[Ut,j ])2 ≤ max

j

(
E[Ut,j ])2 = lim

T →∞Op

(
n

T

)
= 0.(8.5)

As Var(Ut,j ) = E[(Ut,j )
2] − (E[Ut,j ])2 = E[(Ut,j )

2], again with the strong law
of large numbers we have

Pr

(
lim

T →∞
1

T

T∑
t=1

U2
t,j = E

[
(Ut,j )

2]) = 1.
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Let ej = (0, . . . ,0,1,0, . . . ,0)T be the unit vector of length n(2p + 1) whose j th
entry equals 1. Then for each t and j , we can show

U2
t,j = eT

j UtUT
t ej = eT

jX T
t

(
D0TD0)−1D0Tξ tξ

T
t D0(D0TD0)−1Xtej

≤ C2eT
j

(
X T

t D0Tξ t

)(
X T

t D0Tξ t

)Tej

≤ C2
{
max

i

(
fT
t λi + εit

)2 + max
i

∥∥(fT
t λi + εit

)
Xit

∥∥2 + max
i

‖�ift + εit‖2
}
.

The last inequality is due to X T
t D0Tξ t = (dT

t1, . . . ,dT
tn)

T, where each dt i is a 2p+1
by 1 vector as introduced in (8.52).

Hence, when T → ∞, with probability equals 1, Var(Ut,j ) can be uniformly
upper bounded by a large enough positive constant as follows:

Var(Ut,j ) ≤ C2

{
max

i

1

T

T∑
t=1

(
fT
t λi + εit

)2 + 1

T

T∑
t=1

max
i

∥∥(fT
t λi + εit

)
Xit

∥∥2

+ 1

T

T∑
t=1

max
i

‖�ift + εit‖2

}
(8.6)

≤ C2
{
max

i

(‖λi‖2 + σ 2
1i

)(
1 + max

i,t
‖Xit‖2

)
+ max

i
‖�i‖2

F + p max
i

σ 2
2i

}
≤ C3 < ∞.

With the results in (8.5) and (8.6), we showed when T → ∞, with probability
equals 1, for each j ∈ {1, . . . , n(2p + 1)}, U1,j , . . . ,UT,j are i.i.d. random vari-
ables with E[Ut,j ] = 0, Var(Ut,j ) ≡ σ ∗2

j and maxj σ ∗2
j ≤ C < ∞ for some large

enough positive constant C. Hence, by the central limit theorem, we have

√
T

(
1

T

T∑
t=1

Ut,j

)
D−→N

(
0, σ ∗2

j

)
for j = 1, . . . , n(2p + 1).(8.7)

Then we consider the second part of Sj . According to Lemma 2(iii) and
n2/T → 0, we have ‖D̃TD̃)−1(D0TD0) − I‖ = OP (n/T ) = oP (1/

√
T ). We can

show

1

T

T∑
t=1

Vt,j =
(

1

T

T∑
t=1

Ut,j

)
· oP (1/

√
T ).(8.8)

Combine the results of (8.4) and (8.8), we have for j = 1, . . . , n(2p + 1)

√
T Sj =

{√
T

(
1

T

T∑
t=1

Ut,j

)}{
1 + oP (1)

}
.(8.9)

Then when T → ∞, according (8.7), (8.9) and Slutsky’s theorem, we finish the
first step by showing the results we want in (8.3).
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In the second step, we want to show the results in (8.1). Similar to the way we
decompose At above, we can rewrite K as the sum of two parts

K = 1

T

T∑
t=1

X T
t

(
D0TD0)−1Xt + 1

T

T∑
t=1

X T
t

[(
D̃TD̃

)−1(D0TD0) − I
](

D0TD0)−1Xt

=
(

1

T

T∑
t=1

X T
t

(
D0TD0)−1Xt

)
·
{

1 + oP

(
1√
T

)}
.

According to Condition 2(iv), we denote limT →∞ 1
T

∑T
t=1 X T

t (D0TD0)−1Xt = K∗.
Then we have K−→P K∗ and K−1 −→P K∗−1.

Denote K−1 and K∗−1 by their row vectors: K−1 = (η1, . . . , ηn(2p+1))
T and

K∗−1 = (η∗
1, . . . , η

∗
n(2p+1))

T, where, for k = 1, . . . , n(2p + 1), ηk = (ηk,1, . . . ,

ηk,n(2p+1))
T and η∗

k = (η∗
k,1, . . . , η

∗
k,n(2p+1))

T are the kth row of K−1 and K∗−1,
respectively.

Consider any constant vector a = (a1, . . . , ap)T ∈ Rp , for i = 1, . . . , n,

aT(
β̃i − β0

i

) = aT�iK−1(S1, . . . , Sn(2p+1))
T

= aT(ηi(2p+1)−2p+1, . . . , ηi(2p+1)−p)(S1, . . . , Sn(2p+1))
T

=
p∑

j=1

{
aj

n(2p+1)∑
k=1

η[i(2p+1)−2p+j ],kSk

}
.

For each given i, j and k, as η[i(2p+1)−2p+j ],k −→P η∗[i(2p+1)−2p+j ],k and√
T Sj −→D N(0, σ ∗2

j ), by Slutsky’s theorem we have
√

T ajη[i(2p+1)−2p+j ],kSj
D−→N

(
0,

[
ajη

∗[i(2p+1)−2p+j ],kσ ∗
j

]2)
.

Hence
√

T aT(β̃i − β0
i ) can be considered as a sum of independent nor-

mal random variables. Suppose for any given finite n, we denote
√

T aT(β̃i −
β0

i ) ≡ Mn, it is easy to see Mn ∼ N(0, σ †2
n ), where σ †2

n = ∑p
j=1

∑n(2p+1)
k=1 [aj ×

η∗[i(2p+1)−2p+j ],kσ ∗
j ]2.

Furthermore if we define σ †2 = limn→∞ σ †2
n , and notice the largest eigenvalue

of K∗−1 is upper bounded by a positive constant, we can show σ †2 does exist and
is bounded

σ †2 = lim
n→∞σ †2

n ≤ max
j

a2
j · p∥∥K∗−1∥∥2 · max

j
σ ∗2

j ≤ C < ∞,

where C is a large enough positive constant.
Suppose we have M ∼ N(0, σ †2), and denote the characteristic functions of Mn

and M by ϕn(s) and ϕ(s), respectively, it is easy to see

ϕn(s) = e−(1/2)σ
†2
n s2

, ϕ(s) = e−(1/2)σ †2s2
and

ϕn(s) → ϕ(s) as σ †2
n → σ †2.
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Then by Lévy’s convergence theorem, we have
√

T aT(
β̃i − β0

i

) D−→N
(
0, σ †2).

In the third step, we calculate σ †2.
Notice E[√T aT(β̃i − β0

i )] = 0, when n2/T → 0, we have

σ †2 = T · E
[
aT�iK∗−1[S1, . . . , Sn(2p+1)]T[S1, . . . , Sn(2p+1)]K∗−1�T

i a
]

= T aT�iK∗−1E

[[
1

T

T∑
t=1

Ut

][
1

T

T∑
t=1

Ut

]T]
K∗−1�T

i a

+ 2aT�iK∗−1E

[√
T

1

T

T∑
t=1

Ut

]
E

[√
T

1

T

T∑
t=1

Ut

]T

K∗−1�T
i a

≡ I3 + I4.

Recall the definition of Ut , and limT →∞ 1
T

∑T
t=1 ξ tξ

T
t = I, when n2/T → 0, I3

can be calculated as follows:

I3 = aT�iK∗−1 lim
T →∞

[
1

T

T∑
t=1

X T
t

(
D0TD0)−1D0Tξ tξ

T
t D0(D0TD0)−1Xt

]
K∗−1�T

i a

= aT�iK∗−1�T
i a.

On the other hand, using the results we obtained in (8.7), it is easy to see I4 = 0
when T → 0.

Combining the results form all three steps above, we complete the proof. �

PROOF OF THEOREM 2. Let β̃i = (β̃i1, . . . , β̃ip)T be the initial estimator of
βi obtained in the initial estimation step. According to Lemma 3, we have β̃ij =
β0

ij + Op( 1√
T
) for all i = 1, . . . , n and j = 1, . . . , p. Hence, we can write β̃ij as

β̃ij = β0
ij + eij , eij = Op

(
1√
T

)
, i = 1, . . . , n, j = 1, . . . , p.

Then, one can expect the following holds in the probability sense:

β̃(s) = β0
(s) + e(s), s = 1, . . . , np,

where e(s)’s can be viewed as the results of sorting eij , i = 1, . . . , n, j = 1, . . . , p,
from small to large. Note that

max
1≤t≤np

|e(s)| = Op

(
log(np)√

T

)
.(8.10)

To make the presentation simple, in this proof, we assume there are two change
points in the sequence {β0

(s), s = 1, . . . , np}. The proof for the case with more than
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two change points can be developed similarly. Hence, we consider the following
homogeneity condition:

β0
(s) =

⎧⎪⎨⎪⎩
μ1, when 1 ≤ s ≤ k0

1,

μ2, when k0
1 + 1 ≤ s ≤ k0

2,

μ3, when k0
2 + 1 ≤ s ≤ np.

(8.11)

Also, according to Condition 3(iii) and without loss of generality, we assume

S1,np

(
k0

1
)
< S1,np

(
k0

2
)
.(8.12)

Define

k̂1 = arg min
1≤κ<np

S1,np(κ),

where

S1,np(κ) = 1

np − 1

{
κ∑

s=1

(β̃(s) − β̄1,κ )2 +
np∑

t=κ+1

(β̃(s) − β̄κ+1,np)2

}

and

β̄1,κ = 1

κ

κ∑
t=1

β̃(s), β̄κ+1,np = 1

np − κ

np∑
t=κ+1

β̃(s).

As we can see, in this paper, the detection of homogeneity is equivalent to the
detection of change points among β̃(s), s = 1, . . . , np.

First, we want to show P(k̂1 = k0
1) → 1. To prove this, we only need to show

P(k̂1 < k0
1) → 0, P(k0

1 < k̂1 ≤ k0
2) → 0, and P(k0

2 < k̂1 ≤ np) → 0. In the follow-
ing part, we will discuss these three scenarios one by one.

Scenario 1: P(k̂1 < k0
1) → 0. When κ < k0

1 , it is easy to see that

β̄1,κ = μ1 + 1

κ

κ∑
s=1

e(s) and

β̄κ+1,np = 1

np − κ

( k0
1∑

s=κ+1

β̃(s) +
k0

2∑
s=k0

1+1

β̃(s) +
np∑

s=k0
2+1

β̃(s)

)

= k0
1 − κ

np − κ
μ1 + k0

2 − k0
1

np − κ
μ2 + np − k0

2

np − κ
μ3 + 1

np − κ

np∑
s=κ+1

e(s).

Thus,

κ∑
s=1

(β̃(s) − β̄1,κ )2 =
κ∑

s=1

(
e(s) − 1

κ

κ∑
s=1

e(s)

)2

=
κ∑

s=1

e2
(s) − 1

κ

(
κ∑

s=1

e(s)

)2

.
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Denote

β̃(s) − β̄k+1,np =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

anp,κ + e(s) − 1

np − κ

np∑
l=κ+1

e(l), if s ∈ [
1, k0

1

]
,

bnp,κ + e(s) − 1

np − κ

np∑
l=κ+1

e(l), if s ∈ [
κ + 1, k0

2

]
,

cnp,κ + e(s) − 1

np − κ

np∑
l=κ+1

e(l), if s ∈ [
k0

2 + 1, np
]
,

where

anp,κ = 1

np − κ

[(
np − k0

1
)
(μ1 − μ2) + (

np − k0
2
)
(μ2 − μ3)

]
,

bnp,κ = 1

np − κ

[(
k0

1 − κ
)
(μ2 − μ1) + (

np − k0
2
)
(μ2 − μ3)

]
,

cnp,κ = 1

np − κ

[(
k0

1 − κ
)
(μ2 − μ1) + (

k0
2 − κ

)
(μ3 − μ2)

]
.

We have
np∑

s=κ+1

(β̃(s) − β̄κ+1,np)2

= (
k0

1 − κ
)
a2
np,κ + 2anp,κ

k0
1∑

s=κ+1

(
e(s) − 1

np − κ

np∑
l=κ+1

e(l)

)

+ (
k0

2 − k0
1
)
b2
np,κ + 2bnp,κ

k0
2∑

s=k0
1+1

(
e(s) − 1

np − κ

np∑
l=κ+1

e(l)

)

+ (
np − k0

2
)
c2
np,κ + 2cnp,κ

np∑
s=k0

2+1

(
e(s) − 1

np − κ

np∑
l=κ+1

e(l)

)

+
np∑

s=κ+1

(
e(s) − 1

np − κ

np∑
l=κ+1

e(l)

)2

.

Hence, for κ ≤ k0
1 ,

S1,np(κ) = k0
1 − κ

np − 1
a2
np,κ + k0

2 − k0
1

np − 1
b2
np,κ + np − k0

2

np − 1
c2
np,κ

(8.13)

+ 1

np − 1

np∑
s=1

e2
(s) + R1(κ),
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where

R1(κ) = 1

np − 1

[
2anp,κ

k0
1∑

s=κ+1

e(s) + 2bnp,κ

k0
2∑

s=k0
1+1

e(s) + 2cnp,κ

np∑
s=k0

2+1

e(s)

]

− 2

(np − 1)(np − κ)

× [(
k0

1 − κ
)
anp,κ + (

k0
2 − k1

)
bnp,κ + (

np − k0
2
)
cnp,κ

] np∑
s=κ+1

e(s)

− 1

(np − 1)κ

(
κ∑

s=1

e(s)

)2

− 1

(np − 1)(np − κ)

( np∑
s=κ+1

e(s)

)2

.

Note that anp,κ , bnp,κ and cnp,κ are all bounded, recalling (8.10), one has∣∣R1(κ)
∣∣ = Op

(
log(np)√

T

)
uniformly in κ ∈ [

1, k0
1
]
.(8.14)

Therefore, based on (8.13), (8.14) and some calculations, we can show

S1,np(κ) − S1,np

(
k0

1
)

= 1

np − 1
· k0

1 − κ

(1 − κ/(np))(1 − k0
1/(np))

(8.15)

×
[(

1 − k0
1

np

)
(μ1 − μ2) +

(
1 − k0

2

np

)
(μ2 − μ3)

]2

+ Op

(
log(np)√

T

)

=: �1(κ) + Op

(
log(np)√

T

)
.

Note that �1(κ) > 0 for any 1 ≤ κ < k0
1 . Recall that p is fixed and n logn =

o(
√

T ), therefore,
log(np)√

T
= o

(
1

np

)
,(8.16)

which implies that

log(np)√
T

= op

(
�1(κ)

)
uniformly for κ ∈ [

1, k0
1 − 1

]
.

Based on the above arguments, one immediately has

P
(
k̂1 < k0

1
) ≤ P

(
S1,np(k̂1) − S1,np

(
k0

1
)
< 0, k̂1 < k0

1
)

= P

(
�1(k̂1) + Op

(
1√
T

)
< 0, k̂1 < k0

1

)
(8.17)

→ 0.
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Scenario 2: P(k0
1 < k̂1 ≤ k0

2) → 0. When k0
1 < κ ≤ k0

2 , it is easy to see that

β̄1,κ = k0
1

κ
μ1 + κ − k0

1

κ
μ2 + 1

κ

κ∑
s=1

e(s) and

β̄κ+1,np = k0
2 − κ

np − κ
μ2 + np − k0

2

np − κ
μ3 + 1

np − κ

np∑
s=κ+1

e(s).

Thus,

β̃(s) − β̄1,κ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

κ − k0
1

κ
(μ1 − μ2) + e(s) − 1

κ

κ∑
l=1

e(l), if s ∈ [
1, k0

1

]
,

k0
1

κ
(μ2 − μ1) + e(s) − 1

κ

κ∑
l=1

e(l), if s ∈ [
k0

1 + 1, κ
]
,

and

β̃(s) − β̄κ+1,np =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

np − k0
2

np − κ
(μ2 − μ3) + e(s) − 1

np − κ

np∑
l=κ+1

e(l),

if s ∈ [
κ + 1, k0

2

]
,

k0
2 − κ

np − κ
(μ3 − μ2) + e(s) − 1

np − κ

np∑
l=κ+1

e(l),

if s ∈ [
k0

2 + 1, np
]
.

Therefore, for k1 < κ ≤ k2, one has
κ∑

s=1

(β̃(s) − β̄1,κ )2

= k0
1d2

np,κ + 2dnp,κ

k0
1∑

s=1

(
e(s) − 1

κ

κ∑
l=1

e(l)

)
+

k0
1∑

s=1

(
e(s) − 1

κ

κ∑
l=1

e(l)

)2

+ (
κ − k0

1
)
e2
np,κ + 2enp,κ

κ∑
s=k0

1+1

(
e(s) − 1

κ

κ∑
l=1

e(l)

)

+
κ∑

s=k0
1+1

(
e(s) − 1

κ

κ∑
l=1

e(l)

)2

,

where

dnp,κ = κ − k0
1

κ
(μ1 − μ2), enp,κ = k0

1

κ
(μ2 − μ1).
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Also one has
np∑

s=κ+1

(β̃(s) − β̄κ+1,np)2

= (
k0

2 − κ
)
f 2

np,κ + 2fnp,κ

k0
2∑

s=κ+1

(
e(s) − 1

np − κ

np∑
l=κ+1

e(l)

)

+
k0

2∑
s=κ+1

(
e(s) − 1

np − κ

np∑
l=κ+1

e(l)

)2

+ (
np − k0

2
)
g2

np,κ

+ 2gnp,κ

np∑
s=k0

2+1

(
e(s) − 1

np − κ

np∑
l=κ+1

e(l)

)

+
np∑

s=k0
2+1

(
e(s) − 1

np − κ

np∑
l=κ+1

e(l)

)2

,

where

fnp,κ = np − k0
2

np − κ
(μ2 − μ3), gnp,κ = k0

2 − κ

np − κ
(μ3 − μ2).

Thus,

S1,np(κ) = k0
1

np − 1
d2
np,κ + κ − k0

1

np − 1
e2
np,κ + k0

2 − κ

np − 1
f 2

np,κ + np − k0
2

np − 1
g2

np,κ

+ 1

np − 1

np∑
s=1

e2
(s) + R2(κ)

(8.18)

= k0
1(κ − k0

1)

κ(np − 1)
(μ2 − μ1)

2 + (k0
2 − κ)(np − k0

2)

(np − 1)(np − κ)
(μ3 − μ2)

2

+ 1

np − 1

np∑
s=1

e2
(s) + R2(κ),

where

R2(κ) = 1

np − 1
·
[

2dnp,κ

k0
1∑

s=1

e(s) + 2enp,κ

κ∑
s=k0

1+1

e(s) + 2fnp,κ

k0
2∑

s=κ+1

e(s)

+ 2gnp,κ

np∑
s=k0

2+1

e(s)

]
− 2

np − 1

[
k0

1dnp,κ + (
κ − k0

1
)
enp,κ

] · 1

κ

κ∑
s=1

e(s)(8.19)



STRUCTURE IN PDA 1221

− 1

κ(np − 1)

(
κ∑

s=1

e(s)

)2

− 1

(np − κ)(np − 1)

( np∑
s=κ+1

e(s)

)2

− 2

np − 1

[(
k0

2 − κ
)
fnp,κ + (

np − k0
2
)
gnp,κ

] · 1

np − κ

np∑
s=κ+1

e(s).

Note that dnp,κ , enp,κ , fnp,κ and gnp,κ are all bounded, recalling (8.10), we have

∣∣R2(κ)
∣∣ = Op

(
log(np)√

T

)
uniformly in κ ∈ [k1 + 1, k2].(8.20)

Therefore, based on (8.18), (8.20) and some calculations, we can show

S1,np(κ) − S1,np

(
k0

1
)

= κ − k0
1

np − 1

[
k0

1

κ
(μ2 − μ1)

2 − (np − k0
2)2

(np − κ)(np − k0
1)

(μ3 − μ2)
2
]

(8.21)

+ Op

(
log(np)√

T

)

=: �2(κ) + Op

(
log(np)√

T

)
.

Note that (np − k0
2)/(np − κ) < k0

2/κ , we have

�2(κ) = κ − k0
1

np − 1

[
k0

1

κ
(μ2 − μ1)

2 − (np − k0
2)2

(np − κ)(np − k0
1)

(μ3 − μ2)
2
]

(8.22)

≥ κ − k0
1

np − 1
· k0

2

κ
·
[
k0

1

k0
2

(μ2 − μ1)
2 − np − k0

2

np − k0
1

(μ3 − μ2)
2
]
.

According to (8.11), (8.13) and (8.18) and notice that 1
np−1

∑np
s=1 e2

(s) = op(1),
we can see that (8.12) is equivalent to

k0
1

k0
2

(μ2 − μ1)
2 >

1 − k0
2

1 − k0
1

(μ3 − μ2)
2.

Hence, �2(κ) > 0 for any k0
1 < κ ≤ k0

2 when n and T is large. Moreover, it follows
from (8.16) that

log(np)√
T

= o
(
�2(κ)

)
uniformly in k0

1 < κ ≤ k0
2 .



1222 Y. KE, J. LI AND W. ZHANG

Base on the above arguments, we have

P
(
k0

1 < k̂1 ≤ k0
2
) ≤ P

(
S1,np(k̂1) − S1,np

(
k0

1
)
< 0, k0

1 < k̂1 ≤ k0
2
)

= P

(
�2(k̂1) + Op

(
log(np)√

T

)
< 0, k0

1 < k̂1 ≤ k0
2

)
(8.23)

→ 0.

Scenario 3: P(k0
2 < k̂1 ≤ np) → 0. When k0

2 < κ ≤ np, symmetric with (8.13)
in the Scenario 1, we have

S1,np(κ) = k0
1

np − 1
h2

np,κ + k0
2 − k0

1

np − 1
p2

np,κ + κ − k0
2

np − 1
q2
np,κ

(8.24)

+ 1

np − 1

np∑
s=1

e2
(s) + R3(κ),

where

hnp,κ = 1

κ

[(
κ − k0

1
)
(μ1 − μ2) + (

κ − k0
2
)
(μ2 − μ3)

]
,

pnp,κ = 1

κ

[
k0

1(μ2 − μ1) + (
κ − k0

2
)
(μ2 − μ3)

]
,

qnp,κ = 1

κ

[
k0

1(μ2 − μ1) + k0
2(μ3 − μ2)

]
,

and

R3(κ) = 1

np − 1

[
2hnp,κ

k0
1∑

s=1

e(s) + 2pnp,κ

k0
2∑

s=k0
1+1

e(s) + 2qnp,κ

κ∑
s=k0

2+1

e(s)

]

− 2

np − 1

[
k0

1hnp,κ + (
k0

2 − k0
1
)
pnp,κ + (

np − k0
2
)
qnp,κ

] κ∑
s=1

e(s)

− 1

(np − 1)(np − κ)

( np∑
s=κ+1

e(s)

)2

− 1

(np − 1)κ

(
κ∑

s=1

e(s)

)2

.

First, taking κ = k0
2 in (8.21) and (8.22) respectively, we have

S1,np

(
k0

2
) − S1,np

(
k0

1
) = �2

(
k0

2
) + Op

(
log(np)√

T

)
(8.25)

and for large n and T ,

�2
(
k0

2
) ≥ 1

2

(
τ 0

2 − τ 0
1
)[τ 0

1

τ 0
2

(μ2 − μ1)
2 − 1 − τ 0

2

1 − τ 0
1

(μ3 − μ2)
2
]

=: C∗ > 0.(8.26)
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Second, notice that (8.15) implies that there exists a constant M > 0 such that

S1,np(κ) − S1,np

(
k0

1
) ≥ −M log(np)√

T
in probability when κ ∈ [

1, k0
1
]
,

which, by symmetry, implies that there exists a constant M ′ > 0 such that

S1,np(κ) − S1,np

(
k0

2
) ≥ −M ′ log(np)√

T
(8.27)

in probability when κ ∈ [k0
2 + 1, np].

It follows from (8.25), (8.26) and (8.27) that there exists a constant C0 > 0 such
that, when κ ∈ [k0

2 + 1, np] and n and T are large,

S1,np(κ) − S1,np

(
k0

1
) = S1,np(κ) − S1,np

(
k0

2
) + S1,np

(
k0

2
) − S1,np

(
k0

1
)

≥ C∗ − C0 log(np)√
T

in probability.

This inequality immediately yields

P
(
k̂1 > k0

2
) ≤ P

(
S1,np(k̂1) − S1,np

(
k0

1
)
< 0, k̂1 > k0

2
) → 0.(8.28)

Now, combining (8.17), (8.23) and (8.28) together, we have

P
(
k̂1 = k0

1
) → 1.(8.29)

Given this consistency result, we can sort and divide the sequence {β̃(1), . . . ,

β̃(np)} into two subregions with the first subregion consisting of the first k̂1 sorted
initial estimators and the second subregion consisting of the rest np − k̂1 sorted
initial estimators. According to Condition 3, estimating the second change point
based on the rest np − k̂1 sorted initial estimators is equivalent to estimating one
change point based on {β̃(k0

1+1), . . . , β̃(np)}. The consistency of the estimator of the

second change point, that is, k̂2, can be proved by a similar fashion as (8.29).
Based on Condition 3 and the above arguments, one can estimate change points

k0
i1
, . . . , k0

im
consistently through an iterative algorithm.

The number of change points N can also be estimated consistently by our de-
tection of homogeneity method. In fact, by Lemma 3, it is easy to see that

min
1≤s≤N̂

(β̃
(k̂(s+1))

− β̃
(k̂(s))

)2 = min
1≤k≤N

(μk+1 − μk)
2 + op(1),

where μk , k = 1, . . . ,N + 1, is the sorted β0,k , k = 1, . . . ,N + 1.
If the subregion {β̃(i), . . . , β̃(j)} contains at least one change point, it follows

from the similar arguments in (8.24) that

Si,j (j) ≥ C
j − i

np − 1
min

1≤k≤N
(μk+1 − μk)

2 + op(1)(8.30)
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as long as j − i has the same order as np, where C is some positive constant.
According to Condition 3(v), the right-hand side of the above inequality is on the
constant order while the threshold δ → 0 as np → ∞, hence we will successfully
detect one true change point in this subregion with probability approaching one.
Obviously, other true change points will also be successfully detected one by one
by the iterative method proposed in step 2. If there is no change point left in the
subregion {β̃(i), . . . , β̃(j)}, then it is clear that Si,j (j) will approach to zero with
rate o(1/(np)) by (8.10). Note that from Condition 3(v), npδ → ∞ as np → ∞.
Hence, our procedure will stop the detection correctly in this subregion. The above
arguments show that N will be estimated consistently by our procedure.

After re-parameterising βij based on the detection of homogeneity, we are able
to show

P(N̂ =N ) −→ 1 and P
(
k̂(s) = k0

(s)

) −→ 1, s = 1, . . . ,N .

As the subspace MA defined in Section 3 is homotopy equivalent to R
N+1,

MA is a connected space. Then similar to Lemma 1, we can show there exists

a local maximiser �̂
oracle

of L(�) on MA and ‖θ̂oracle − θ0‖ = OP (
√

n
T
). Also

similar to Lemma 2, we have all the eigenvalues of [(D̂oracle)TD̂oracle] are bounded
by constant and ‖[(D̂oracle)TD̂oracle]−1(D0TD0) − I‖2 = OP ( n

T
).

In the proof above, we showed with probability approaching one our proposed
homogeneity detection method can correctly estimate the number of groups and
the positions of all change points. Hence, we can claim with probability approach-
ing one the estimator β̂ obtained from the final estimation step equals the oracle

estimator β̂
oracle

.
Recall the definition of the subspace MA and matrix A, it is easy to see both

β̂
oracle

and β0 belong to MA, and we have the following relationships:

β0
A = A	θ0 and β̂

oracle
A = A	β̂

oracle
,(8.31)

where 	 = (�1, . . . ,�n)
T and �i , i = 1, . . . , n is defined in (8.47).

Using the relationships in (8.31) and similar to (8.48), we have

β̂
oracle
A − β0

A = A	K†−1
[

1

T

T∑
t=1

A
†
t

]
= A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1K†−1
[

1

T

T∑
t=1

A
†
t

]
...

�nK†−1
[

1

T

T∑
t=1

A
†
t

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡ A�,

where K† = 1
T

∑T
t=1 X T

t [(D̂oracle)TD̂oracle]−1Xt , A
†
t = X T

t [(D̂oracle)TD̂oracle]−1 ×
D0Tξ t for t = 1, . . . , T , � = (�T

1 , . . . ,�T
n)T, and �i = (�i1, . . . ,�ip)T for i =

1, . . . , n.
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Follow the same way we prove Theorem 1, and we are able to show for i =
1, . . . , n, j = 1, . . . , p

√
T �ij

D−→N
(
0, σ ∗2

ij

)
,(8.32)

where σ ∗2
ij is the j th diagonal entry of

�∗
i = lim

T →∞�i

(
1

T

T∑
t=1

X T
t

(
D0TD0)−1Xt

)−1

�T
i .(8.33)

Furthermore, all σ ∗2
ij s are uniformly upper bounded by some large enough positive

constant C, that is, maxi,j σ ∗2
ij < C.

Then for any given constant vector a† ∈ R
N+1, when T → ∞,

√
nT a†T ×

(β̂
oracle
A −β0

A) can be treated as a summation of np independent zero mean normal
random variables. In addition, the limit of the summation of the variances of these
normal random variables exists and is bounded. Hence, follow the similar way we
prove the Theorem 1, we can complete the proof by constructing characteristic
functions and using Lévy’s convergence theorem. �

PROOF OF THEOREM 3. Consider any vector a ∈ R
np , we can number the

indexes of its entries as a = {aT
1 , . . . ,aT

n}T, where ai = {ai1, . . . , aip}T for i =
1, . . . , n. Let Mp be a subspace of Rnp defined by

Mp = {
a ∈ R

np : aij = akj , for any i, k = 1, . . . , n and j = 1, . . . , p
}
.(8.34)

According to the definition of β̌ , it is easy to see β̌ ∈ Mp .
Then we can define a map T : Rnp → Mp , such that for any a = {aT

1 , . . . ,

aT
n}T ∈ R

np , T (a) = (μT
a , . . . ,μT

a )T, where μa = 1
n

∑n
i=1 ai . It is easy to check, T

is the orthogonal projection from R
np to Mp .

Suppose there exists a pair of index a, b such that β0
aj �= β0

bj for some a, b =
1, . . . , n, a �= b and j = 1, . . . , p. Without loss of generality, here we assume β0

aj <

β0
bj . Then the relationship between β0

aj , β0
bj and 1

n

∑n
i=1 β0

ij is one of the following
four scenarios:

(i)
1

n

n∑
i=1

β0
ij ≤ β0

aj ; (ii) β0
aj ≤ 1

n

n∑
i=1

β0
ij ≤ β0

aj + 1

2
J ;

(iii) β0
aj + 1

2
J <

1

n

n∑
i=1

β0
ij ≤ β0

bj ; (iv) β0
bj <

1

n

n∑
i=1

β0
ij .

One can see, for all four scenarios above, we have

max

{∣∣∣∣∣β0
aj − 1

n

n∑
i=1

β0
ij

∣∣∣∣∣,
∣∣∣∣∣β0

bj − 1

n

n∑
i=1

β0
ij

∣∣∣∣∣
}

≥ 1

2
J .(8.35)
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According to Condition 4, it is easy to see β0 /∈ Mp . Furthermore, there exists
an integer j0, 1 ≤ j0 ≤ p, such that there are at least min{Gnn, (1 − Gn)n} pairs of
elements in {β0

1,j0
, . . . , β0

n,j0
} that have different values.

Then using the property of orthogonal projection and (8.35), we can complete
the proof by showing

∥∥β̌ − β0∥∥2 ≥ ∥∥β0 − T
(
β0)∥∥2 =

p∑
j=1

n∑
i=1

∣∣∣∣∣β0
ij − 1

n

n∑
i=1

β0
ij

∣∣∣∣∣
2

≥
n∑

i=1

∣∣∣∣∣β0
i,j0

− 1

n

n∑
i=1

β0
i,j0

∣∣∣∣∣
2

≥ min
{
G0n, (1 − G1)n

}
max

{∣∣∣∣∣β0
aj − 1

n

n∑
i=1

β0
ij

∣∣∣∣∣
2

,

∣∣∣∣∣β0
bj − 1

n

n∑
i=1

β0
ij

∣∣∣∣∣
2}

≥ C2n where C2 = J 2 min{G0,1 − G1}
4

. �

8.3. Proofs of some technical lemmas. In this subsection, we introduce some
useful technical lemmas and their proofs.

LEMMA 1. Under Condition 1 in Section 8.1, there exists a local maximiser
�̃ of L(�), and ‖θ̃ − θ0‖ = OP (

√
n
T
).

PROOF. As θ is a sub-vector of �, we have ‖θ̃ − θ0‖ ≤ ‖�̃−�0‖. Let rnT =
(n/T )−1/2. Lemma 1 is proven if one can show there exists a local maximiser of
L(�) such that ‖�̃ − �0‖ = OP (rnT ). This implies, for any given ε > 0, there
exists a large positive constant C such that

P
{

sup
‖u‖=C

L(�0 + rnT u) < L(�0)
}

≥ 1 − ε.(8.36)

Let L′(�0) be the gradient vector of L(�) at � = �0, and L′(�0)j be the j th
component of L′(�0) for j = 1, . . . , dn where dn = n{(p + 1)(q + 2)+ 1}. By the
standard argument on Taylor’s expansion of the likelihood function, we have

L(�0 + rnT u) − L(�0)
(8.37)

= rnT L′(�0)
Tu − 1

2T r2
nT uTI (�0)u

{
1 + oP (1)

}
.

It is straightforward that the first term in (8.37) can be written as

rnT L′(�0)
Tu = CrnT

dn∑
j=1

L′(�0)j
uj

C
≡ CrnT Mn,
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where uj is the j th component of u.
By the central limit theorem, we have T −1/2L′(�0)j −→D N(0, σ ∗2

j ) for j =
1, . . . , dn, and maxj σ ∗2

j is upper bounded. Then we can see T −1/2Mn is a sum-
mation of independent normal random variables with zero mean and uniformly
bounded variances. We define σ †2

n = Var(T −1/2n−1/2Mn) and σ †2 = limn→∞ σ †2
n .

Notice |uj/C| ≤ 1 for all j , we can show the limit σ †2 exists and is upper bounded
as follows:

σ †2 = lim
n→∞n−1

dn∑
j=1

Var
[
T −1/2L′(�0)j

uj

C

]

= lim
n→∞n−1

dn∑
j=1

σ ∗2
j

(
uj

C

)2

≤ lim
n→∞

{
(p + 1)(q + 2) + 1

}
max

j
σ ∗2

j ≤ C∗,

where C∗ is a large enough positive constant.
Suppose we have T −1/2n−1/2M ∼ N(0, σ †2), and denote the characteristic

functions of T −1/2n−1/2Mn and T −1/2n−1/2M by ϕn(s) and ϕ(s), respectively.
It is easy to see

ϕn(s) = e−(1/2)σ
†2
n s2

, ϕ(s) = e−(1/2)σ †2s2
and

ϕn(s) → ϕ(s) as σ †2
n → σ †2.

Then by Lévy’s convergence theorem, we have

T −1/2n−1/2Mn
D−→N

(
0, σ †2).

Furthermore, notice σ †2 is bounded, we have T −1/2n−1/2Mn = OP (1). So
we can see, the first term in (8.37) is a random variable that on the order
Op(rnT n1/2T 1/2) = OP (n) = OP (r2

nT T ). Therefore, by choosing a sufficiently
large C, the second term dominates the first term uniformly in ‖u‖ = C. Thus, we
complete the proof by showing (8.36) holds. �

In the following lemma, we use λ̃min, λ̃max and λ0
min, λ0

max to denote the smallest
and largest eigenvalues of D̃TD̃ and D0TD0, respectively. For any matrix A, we use
A+ to denote the Moore–Penrose pseudo-inverse of A.

LEMMA 2. Under the conditions of Lemma 1 and Condition 2 in Section 8.1:

(i) ‖D̃TD̃ − D0TD0‖2 = OP ( n
T
);

(ii) C−1 ≤ λ̃min ≤ λ̃max ≤ C, where C is a large enough positive constant;
(iii) ‖(D̃TD̃)−1(D0TD0) − I‖2 = OP ( n

T
).
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PROOF. Given θ̃ , the first-order condition of D can be derived through

∂L(̃θ ,D)

∂D
= ∂H1(̃θ,D)

∂D
+ ∂H2(D)

∂D
= 0 where

H1(̃θ ,D) = −1

2

T∑
t=1

tr
{
(Zt −Xt θ̃)T(

DTD
)−1

(Zt −Xt θ̃)
}

and(8.38)

H2(D) = −T

2
log

(∣∣DTD
∣∣).

After some calculations, one can show the two terms of (8.38) are

∂H1(̃θ ,D)

∂D
=

T∑
t−1

D
(
DTD

)−1{
(Zt −Xt θ̃)(Zt −Xt θ̃)T}(

DTD
)−1 and(8.39)

∂H3(D)

∂D
= −T

(
DT)+

.(8.40)

In order to get the relationship between D̃TD̃ and D0TD0, we plug (8.39) and
(8.40) back into (8.38), left multiply T −1D̃T and right multiply D̃TD̃ to both
sides of the equation. Also we notice Zt − Xt θ̃ = Xt (θ

0 − θ̃) + D0Tξ t and
limT →∞ 1

T

∑T
t=1(D

0Tξ tξ
T
t D0) = D0T�D0 = D0TD0. Then we can get

D̃TD̃ − D0TD0 = 1

T

T∑
t=1

{
Xt

(
θ0 − θ̃

)(
θ0 − θ̃

)TX T
t + D0Tξ t

(
θ0 − θ̃

)TX T
t

(8.41)
+Xt

(
θ0 − θ̃

)
ξT

t D0}.
Using the sub-additivity and sub-multiplicativity of matrix norm, Condi-

tion 2(iii), and ‖θ0 − θ̃‖ = OP (
√

n/T ) we obtained from Lemma 1, we can show
that∥∥D̃TD̃ − D0TD0∥∥

≤ 1

T

T∑
t=1

∥∥Xt

(
θ0 − θ̃

)(
θ0 − θ̃

)TX T
t

∥∥ +
∥∥∥∥∥ 2

T

T∑
t=1

D0Tξ t

(
θ0 − θ̃

)TX T
t

∥∥∥∥∥
(8.42)

≤ max
t

(∥∥XtX T
t

∥∥)‖θ0 − θ̃‖2 + 2 max
t

(∥∥XtX T
t

∥∥)‖θ0 − θ̃‖
∥∥∥∥∥ 1

T

T∑
t=1

D0Tξ t

∥∥∥∥∥
= max

t

(∥∥XtX T
t

∥∥) · OP

(
n

T

)
.

Now, one can complete the proof of (i) by showing maxt ‖X T
t Xt‖ is upper

bounded by some positive constant.
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According to the property of matrix norm, we have

max
t

∥∥X T
t Xt

∥∥ ≤
{
max

t

√∥∥X T
t Xt

∥∥
1

}{
max

s

√∥∥X T
s Xs

∥∥∞
}
.(8.43)

By some calculations, we can show for any t = 1, . . . , T ,

X T
t Xt = diag

(
BT

1tB1t , . . . ,BT
ntBnt

)
,

where for i = 1, . . . , n,

BT
itBit =

⎛⎜⎝ 1 XT
it 0T

p

Xit XitX
T
it 0p×p

0p 0p×p Ip

⎞⎟⎠ .

From the structure of X T
t Xt , it is easy to see each row or column of X T

t Xt has
at most p + 1 non-zero entries. In addition, according to Condition 2(ii), we have
maxi,t ‖Xit‖ ≤ C for some positive constant C. Hence, consider p is fixed, it is
easy to see

max
t

√∥∥X T
t Xt

∥∥
1 ≤

√
(p + 1)C and

(8.44)
max

t

√∥∥X T
t Xt

∥∥∞ ≤
√

(p + 1)C.

This immediately completes the proof of (i).
The proof of (ii) is readily after the result in (i). Under Condition 2(iii) and let

C be a large enough positive constant, we have

C−1 ≤ λ0
min ≤ λ0

max ≤ C.

Combining this with (8.42), we have

C−1 − ∥∥D̃TD̃ − D0TD0∥∥ ≤ λ̃min ≤ λ̃max ≤ C + ∥∥D̃TD̃ − D0TD0∥∥.
As n2/T → 0, the result in (ii) is shown as one can always find a large enough
positive constant C∗, such that

C∗ > C + ∥∥D̃TD̃ − D0TD0∥∥.
Furthermore, it is straightforward to see, (D̃TD̃)−1 is also positive definite and

all its eigenvalues are bounded away from 0 and ∞.
To prove (iii), we left multiply (D̃TD̃)−1 to both sides of (8.41) and take the

matrix norm of both sides, then we complete the proof of (iii) by showing∥∥(D̃TD̃
)−1(D0TD0) − I

∥∥ ≤ ∥∥(D̃TD̃
)−1∥∥∥∥D̃TD̃ − D0TD0∥∥ = Op

(
n

T

)
. �

LEMMA 3. Under the conditions of Lemma 2 and n2/T → 0, we have ‖β̃i −
β0

i ‖ = OP ( 1√
T
).
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PROOF. Given D̃ as the maximum likelihood estimator of D, the first order
condition of θ is

0 = ∂L(θ , D̃)

∂θ

∣∣∣∣
θ=θ̃

= −1

2

T∑
t=1

∂ tr{(Zt −Xtθ)T(D̃TD̃)−1(Zt −Xtθ)}
∂θ

∣∣∣∣
θ=θ̃

(8.45)

=
T∑

t=1

X T
t

(
D̃TD̃

)−1
(Zt −Xt θ̃).

By plugging Zt −Xt θ̃ =Xt (θ
0 − θ̃) + D0Tξ t into (8.45), we get

(̃
θ − θ0) =

(
1

T

T∑
t=1

X T
t

(
D̃TD̃

)−1Xt

)−1[
1

T

T∑
t=1

X T
t

(
D̃TD̃

)−1D0Tξ t

]
(8.46)

≡ K−1

[
1

T

T∑
t=1

At

]
,

where K = 1
T

∑T
t=1 X T

t (D̃TD̃)−1Xt , and At =X T
t (D̃TD̃)−1D0Tξ t for t = 1, . . . , T .

Recall the definition of �i , for i = 1, . . . , n, we can write �i as

�i = (0p×{i(2p+1)−2p} Ip 0p×{(n−i)(2p+1)+p}).(8.47)

For i = 1, . . . , n, when we left multiply �i to the both sides of (8.46), we have

(
β̃i − β0

i

) = �iK−1

[
1

T

T∑
t=1

At

]
.(8.48)

We first show that all the eigenvalues of K−1 are lower bounded by C−1 and
upper bounded by C, where C is some large enough positive constant. Let λmin(·)
and λmax(·) denote the smallest and largest eigenvalues of a given square matrix
respectively. According to Lemma 2(ii), we can show

C−1
1 λmin

(
1

T

T∑
t=1

X T
t Xt

)
≤ λmin(K) ≤ λmax(K)

(8.49)

≤ C1λmax

(
1

T

T∑
t=1

X T
t Xt

)
,

where C1 is a positive constant.
On the one hand, according to Condition 2(ii), we have λmin(

1
T

∑T
t=1 X T

t Xt ) ≥
C−1

2 for some positive constant C2. So λmin(K) is lower bounded by C−1
1 C−1

2 .
On the other hand, according to (8.42), (8.43) and (8.44), we can upper bounded

λmax(K) as follows:

λmax(K) ≤ C1λmax

(
1

T

T∑
t=1

X T
t Xt

)
≤ C1maxt

∥∥X T
t Xt

∥∥ ≤ C1C3(p + 1),(8.50)
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where C3 is a positive constant.
Therefore, by choosing a large enough positive constant C, we can show

C−1 < λmin
(
K−1) < λmax

(
K−1) < C.(8.51)

By taking matrix norm of both sides of (8.48) and using (8.51), we can upper
and lower bound ‖β̃ i − β0

i ‖2 for i = 1, . . . , n as

1

C2

∥∥∥∥∥ 1

T

T∑
t=1

�iAt

∥∥∥∥∥
2

≤ ∥∥β̃i − β0
i

∥∥2 ≤ C2

∥∥∥∥∥ 1

T

T∑
t=1

�iAt

∥∥∥∥∥
2

.

Furthermore, according to Lemma 2(ii), we have for i = 1, . . . , n

1

C2

∥∥∥∥∥ 1

T

T∑
t=1

�iX T
t D0Tξ t

∥∥∥∥∥
2

≤
∥∥∥∥∥ 1

T

T∑
t=1

�iAt

∥∥∥∥∥
2

≤ C2

∥∥∥∥∥ 1

T

T∑
t=1

�iX T
t D0Tξ t

∥∥∥∥∥
2

.

To make the structure of X T
t D0Tξ t clear, we denote X T

t D0Tξ t = (dT
t1, . . . ,dT

tn)
T,

where each dt i is a 2p + 1 by 1 vector with the following form:

dt i =
⎛⎝ fT

t λi + εit(
fT
t λi + εit

)
Xit

�ift + εit

⎞⎠ .(8.52)

Recall maxi,t ‖Xit‖ ≤ C3, then we can show maxi,t,s ,X
T
itXis ≤ maxi,t ‖Xit‖2 ≤

C2
3 . By some calculations, for i = 1, . . . , n, we have∥∥∥∥∥ 1

T

T∑
t=1

�iX T
t D0Tξ t

∥∥∥∥∥
2

=
∥∥∥∥∥ 1

T

T∑
t=1

(
fT
t λi + εit

)
Xit

∥∥∥∥∥
2

≤ C2
3

T

[
1

T

T∑
t=1

(
fT
t λi + εit

)2
]

+ C2
3

T 2

T∑
t,s=1
t �=s

(
fT
t λi + εit

)(
fT
s λi + εis

)

≡ I1 + I2.

We first consider I1. Under Condition 2(i), we have both E[(fT
t λi + εit )

2] and
Var((fT

t λi + εit )
2) are fixed and uniformly upper bounded by a positive constant

for all i = 1, . . . , n. Thus, one can easily show I1 is of order OP (1/T ). We then
calculate I2. Follow the model assumption and Condition 2(i), for i = 1, . . . , n,
t, s = 1, . . . , T and t > s, (fT

t λi +εit )(fT
s λi +εis) can be considered as i.i.d. random

variables with zero mean and fixed and bounded variance. By the central limit
theorem, one can show I2 is also of order OP (1/T ).
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As both I1 and I2 are of order OP (1/T ), one can complete the proof by showing

C∗−1OP

(
1

T

)
≤ ∥∥β̃i − β0

i

∥∥2 ≤ C∗OP

(
1

T

)
,

uniformly for i = 1, . . . , n, where C∗ is a large enough positive constant. �
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SUPPLEMENTARY MATERIAL

Additional numerical results (DOI: 10.1214/15-AOS1403SUPP; .pdf). We
provide additional numerical results for PSID data analysis.
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